
Towards a Democratic Federation for Infrastructure Service Provisioning

Bishakh Chandra Ghosh∗§, Sourav Kanti Addya∗§, Anurag Satpathy†, Sandip Chakraborty∗, and Soumya K Ghosh∗
∗Indian Institute of Technology Kharagpur, India; †National Institute of Technology Rourkela, India
Email: {ghoshbishakh, kanti.sourav, anurag.satpathy}@gmail.com, {skg, sandipc}@cse.iitkgp.ac.in

Abstract—The current implementations of federated clouds
depend on a central broker that takes care of the resource
allocation as well as scheduling and pricing for the shared
resources under the federation. In this paper, we propose an
alternate architecture for federated Infrastructure-as-a-service
(IaaS) provisioning with the help of a completely decentralized
marketplace designed using the blockchain technology. The
proposed architecture is free from any central broker and
supports decentralization, transparency of resource exchanges,
autonomy of service providers, immutability in information
exchange for dispute-free billing and fairness for service provi-
sioning. An in-house implementation of the proposed architec-
ture with three cloud service providers shows that CloudChain
indeed supports resource allocation fairness while achieving
almost similar service provisioning performance compared to
a central broker based federation architecture.

Keywords-IaaS; Cloud Federation; Blockchain.

I. INTRODUCTION

In a federated multi-cloud architecture, multiple cloud
service providers (CSPs) come in an agreement to share
the infrastructure resources, such as computing, memory,
storage, etc., among themselves. Such an architecture helps
the CSPs to increase the overall revenue and provide better
quality of service (QoS) especially during peak loads [1].
Most of the existing federation architectures [2], [3] have
the following issues in common. (i) They are managed
using a central authority called as federation broker. The
broker receives service requests from the clients and makes
decisions on how to allocate resources from various CSPs
to achieve the associated objectives. (ii) The broker handles
all the pricing aspects of the CSPs under the federation.
Therefore, it is prone to single point failure. (iii) The
centralized architecture has its inherent problems like lack
of transparency and control, risk of manipulation, possibility
of fraudulent activities, etc. The above issues can be tackled
by developing a decentralized federation by removing the
broker from the architecture. Blockchain [4] based public
ledger technology works as a good platform for supporting
decentralization. However, a number of research challenges
need to be tackled. First, a system needs to be developed
to coordinate the federation level agreement (FLA) during
execution. Second, the resource allocation scheduling needs
to be developed over the decentralized architecture. Third,
the infrastructure level services over a cloud, such as virtual

§ Equal contribution

machine (VM) resource allocation, VM migration, etc. needs
to be coordinated among multiple CSPs.

A few recent works have explored blockchain to support
services over a cloud by utilizing public ledger platforms.
In [5], the authors have proposed a framework for con-
sumer based data movement policy for clouds by utilizing
blockchain. Tosh et al. in [6] have proposed a blockchain
based data provenance architecture called BlockCloud which
comprises a proof-of-stake based consensus mechanism for
securely capturing the data operations occurring in the cloud
environment. Sukhodolskiy and Zapechnikov [7] have built a
prototype of multi-user system for access control to data-sets
stored in an untrusted cloud environment. However, these
works only consider the aspects of a single cloud and are
not concerned about the decentralized sharing of resources
among multiple clouds. In their recent work, Uriarte et al.
[8] have proposed a mechanism to manage dynamic service
level agreements (SLAs) in a distributed manner with the
help of smart contracts. Mainly, they have pointed out the
issues and challenges of converting SLAs to smart contracts.
In another work, Margheri et al. [9] have developed a
blockchain based registry approach to ensure proper gover-
nance in a federation. Few other recent literature [10] have
discussed about blockchain based mechanism for detecting
and reporting SLA. However, none of these works mentioned
above are concerned about the complete decentralization of
the cloud federation keeping all the functionalities of cloud
federation intact and holding the interests of the users as
well as CSPs.

In contrast to the existing works, we develop a broker-
less decentralized democratic federation marketplace, called
CloudChain using a permissioned blockchain model. This
democratic architecture eliminates the inherent limitations
of any centralized system such as lack of transparency,
single point of failure, risk of manipulation, surveillance
etc. We consider that the federation involves sharing of
resources at the infrastructure level, providing a federated
IaaS platform. We implement a prototype of CloudChain
using open-source Hyperledger Fabric [11] platform and
observe that the proposed architecture can provide all the
facilities of a decentralized open marketplace with a very
marginal compromise on the IaaS performance compared to
a centralized broker based architecture, whereas improves
system fairness along with other incentives of a decentral-
ized platform.



II. SYSTEM ARCHITECTURE

Our proposed federation architecture considers two types
of service providers namely, (i) demanding CSPs, which
suffer from resource limitations under peak loads, and (ii)
supplying CSPs, that have enough available resources. The
demanding CSPs often outsources instantiation requests to
the supplying CSPs. Figure 1 gives a broad overview of
CloudChain architecture, where multiple CSPs share their
infrastructure resources with the help of a decentralized
exchange developed using the blockchain platform. Cloud-

Figure 1. CloudChain model overview

Chain consists of multiple CSPs connected over a network
that agree to share their idle resources partially or fully. Let
C = {C1, C2, ..., Cn} be a set of CSPs which provide IaaS
and own a cluster of hardware resource units called physical
hosts. Together in all hosts, a CSP, Ci can support certain
number of VMs with different VM specifications. Let this
be represented by a set VCi = {V1,V2, ...,Vm}. Each Vj is
distinct, and its configuration is specified by Vj .SP , where
SP is the specification of a VM denoted using four tuples
– {CPU ,MEM,PS,LOC}, where CPU is the number of
virtual CPU cores for the VM,MEM is the memory of the
VM in GB, PS is the persistent storage associated with the
VM in GB, and LOC is the geographic location of the host
where the VM is provisioned.

In CloudChain, each CSP Ci offers a subset of VCi
with their corresponding specifications and charges. VM
request(s) from clients across the globe may come to
any Ci in CloudChain with the specification of Ruser =
{SP, duration}, where SP is the specification for re-
quested VM and duration is the time duration for which
the VM needs to be provisioned. According to the requests,
a Ci can either issue the VM resources over its own physical
hosts or request some other Cj in the federation and lease the
required infrastructure resources for hosting the requested
VM. Therefore, a CloudChain CSP can host VMs from both
the end-users as well as from other CSPs based on the FLA.

We have taken into consideration both crash fault model
for handling cases of non-availability or crash of a CSP and
Byzantine fault model to handle the malicious behavior (for
example, denying a provisioned VM or overcharging beyond
the provisioning) of the CSPs. In the later, faulty nodes can

Figure 2. CloudChain system components

behave arbitrarily and at most f =
⌊
N−1
3

⌋
nodes can be

faulty, where N is the total number of nodes (here CSPs) in
the system. Faulty nodes can also try to collude other nodes
for compromising the system. However, we assume that the
nodes cannot break cryptographic techniques like signatures,
encryption, and collision-resistant-hashing.

Different components of CloudChain, as shown in Figure
2, are as follows.
(i) CloudChain Blockchain: A permissioned blockchain
based distributed ledger that forms the core of CloudChain.
It implements a decentralized exchange where resources are
traded between different CSPs with the help of transac-
tions and smart contracts. (ii) Request Queue: Each CSP
maintains a request queue (ReQ) where all the incoming
requests for VM provisioning from the clients are queued.
(iii) Resource Bucket: The resource bucket is a list of
available resources, which may include both local resources
owned by the concerned CSP or exchange resources which
are presently being offered by other CSPs in the CloudChain
Blockchain. So the resource bucket is further divided into
two components: (a) Local resource bucket (ResBlocal)
and (b) Exchange resource bucket (ResBexcg). ResBexcg

is updated according to the latest state of the CloudChain
Blockchain. (iv) VM Manager: The VM Manager is re-
sponsible for creating, destroying and managing VMs in
different CSPs. (v) Scheduler: The scheduler controls and
coordinates different modules of the system. It handles
placement of requests and management of resources. (vi)
Transaction Manager: Transaction manager acts as an
interface to the CloudChain Blockchain. It receives requests
from the scheduler when it schedules a request on an remote
resource. It also communicates with the VM manager to
grant access to the resources being offered in the exchange.

Next we discuss the CloudChain Blockchain in details,
which implements the decentralized marketplace for the
exchange of infrastructure resources for IaaS provisioning.

III. CLOUDCHAIN BLOCKCHAIN

CloudChain blockchain serves as an information registry
that maintains the current state of available resources on
offer, pending requests and service agreements. The high
level operations that the CSPs can perform on the exchange
are – i) Offer a new resource for outsourcing, ii) Withdraw an



existing offer, iii) Query for available resources, iv) Request
to lease a resource, and v) Grant a request.

A. Exchange States

Let T be the timestamp when an operation, denoted by
a unique identity U , is being performed. IS and ID are
the identity of the supplying CSP and the demanding CSP,
respectively. SP is a VM configuration which is being
requested by the demanding CSP or offered by the supplying
CSP; duration is the time for which a VM is being offered
or requested for; P is the price of an offered VM per unit
time. We define offerings, requests, and associations as fol-
lows. An offering (O) in CloudChain is a collection of VM
instances which are being offered by the supplying CSPs
and can be leased by the demanding CSPs. It is identified
by five tuples – {U , T , IS ,SP,P}. A request (R) is a
solicitation from a demanding CSP for leasing infrastructure
service in the form of a VM. It is defined by five tuples –
{U , T ,UO, ID, duration}, where UO is the identity of the
offering that in being requested. An association (A) denotes
an agreement between a supplying CSP and a demanding
CSP over a particular offering. It is defined using seven
tuples – {U , T ,UO, ID, IS , start time, duration}. Here
UO is the identity of the offering that in being leased by
this association, and start time is the starting time of the
association.

All the events related to the exchange are recorded in the
form of transactions. A collection of ordered transactions
form a block and each block is linked to the previous block
using the hash of that block, forming the blockchain data
structure [4]. Verification and total ordering of the transac-
tions are achieved by the consensus protocol. This chain of
blocks forms the distributed ledger. Thus, this distributed
ledger of transactions is nothing but an immutable history
of all the events related to the exchange. From this ledger,
any CSP can reconstruct and validate the present state of the
exchange, which we call Exchange State.

At any time instance i, the CloudChain Blockchain main-
tains an Exchange State Si = {Oi,Ri,Ai}, where Oi =
{Oi1,Oi2, ...} is the set of current offerings by the supplying
CSPs, Ri = {Ri1,Ri2, ..} is set of current requests from
the demanding CSPs, and Ai = {Ai1,Ai2, ...} is set of
current associations. The set of exchange states over time
is maintained in the CloudChain blockchain, and each CSP
maintains its own copy of the blockchain. A new exchange
state is included in the blockchain when a transaction is
being performed, as discussed next.

B. Transactions

A transaction Ti ∈ T, where T is a set of all possible
transactions in CloudChain, is defined as a function that
operates on a particular state of the exchange to produce
a new state. Formally, Ti : S × A → S, where S is
the set of exchange states, and A is a set of all possible

operations (offerings, requests or associations). We divide
our transactions into two broad categories –
(1) Service Offering Transactions: These transactions are
used to add, remove, and manage the Offerings on the
exchange. These are of two types – (i) Add-Offering (Tadd),
(ii) Remove-Offering (Trem).
(2) FLA Transactions: These transactions are used to
request, and initiate an agreement between a supplying CSP
and a demanding CSP. These are of two types – (i) Request-
Offering (Treq), (ii) Grant-Request (Tgrant)

Let Si = {Oi,Ri,Ai} be the latest state of the Cloud-
Chain blockchain, and Sj = {Oj ,Rj ,Aj} be the next
state after executing a transaction. Then we define different
transactions as follows.
Add-Offering takes input a new offering (O) and adds it to
the set of current offerings in the exchange state.

Tadd(Si,O) = Sj 3 Oj = Oi ∪ {O};Aj = Ai;Rj = Ri

Remove-Offering takes input an offering (O) and removes
it from the set of current offerings from the Exchange State.

Trem(Si,O) = Sj 3 Oj = (Oi \ {O});Aj = Ai;Rj = Ri

This transaction is valid only if O ∈ Oi, and O.IS is same
as that of the CSP executing the transaction.
Request-Offering takes input a request (R) for a particular
offering and adds it to the set of current requests.

Treq(Si,R) = Sj 3 Oj = Oi;Aj = Ai;Rj = (Ri ∪ {R})

The transaction is valid only if the following conditions are
satisfied:
(i) The offering exists: Ok ∈ Oi such that Ok.U = Rj .UO
(ii) No other request is already registered against the same
offering : {Rm ∈ Ri | Rm.UO = R.UO} = φ
Grant-Offering is executed by the supplying CSP if it grants
a request (R). It creates an association based on the request.
The association is added to the set of associations in the
exchange state.

Tgrant(Si,R) = Sj 3 Oj = (Oi \ {O});Rj = (Ri \ {R});
Aj = Ai ∪ {A}; where,O.U = R.UO

and A = {U , CT ,O.U ,R.ID,O.IS , CT ,R.duration}
CT is the time in the CSP’s clock when a transaction is
committed. This transaction is valid only if R ∈ Si, and
O.IS is same as that of the CSP executing the transaction.

Each of the above transactions can be executed indepen-
dently by each CSP. A transaction is successfully committed
only when all the CSPs agree on it through the consensus
process.

IV. CONSENSUS AND SYSTEM FLOW

CloudChain needs to ensure that the exchange state in all
the CSPs remain consistent, for which we need a consensus
mechanism for committing the blocks.



Figure 3. CloudChain system flow

A. CloudChain Consensus

The CloudChain blockchain is in essence a replicated
service with a state, and any CSP can perform a transaction
to change the current state, provided that the transaction is a
valid one. The system needs to ensure that the transactions
are executed in a deterministic way, and the resulting state
is safely replicated across all the CSPs. Two important
requirements for the correctness of the system are – (a)
consensus among the participants on which transactions
to execute and (b) agreement on a fair ordering of the
transactions.

Since CloudChain is based on a permissioned blockchain,
we can use any suitable byzantine fault tolerant consensus
protocol such that all non-faulty CSPs agree upon a valid and
fair order of the transactions over a newly proposed block.
In order to ensure that client requests are fairly processed,
we choose Redundant Byzantine Fault Tolerance (RBFT)
distributed consensus algorithm [12] which implements a
fairness mechanism capable of monitoring a primary (the
CSP that proposes a new block) and detecting if it behaves
maliciously. Based on RBFT, if the backups observe that the
ordering proposed by the master is N edit-distance away
(N is a configurable parameter) from their own order, then
a view change is requested by electing a new master.

B. CloudChain System Flow

Each CSP participating in CloudChain is responsible for
serving two kinds of requests – (a) multi-tier application

requests from end-users (Local Request), and (b) requests for
offerings from other CSPs (Remote Request). The scheduler
is responsible for placing the requests. In case of unavailabil-
ity of local resources, for federated placement, CloudChain
Placement algorithm finds an optimum compatible offering,
Oopt from ResBexcg , based on the service quality and pric-
ing policies. The overall flow of the system from receiving
a request to its placement is depicted in Figure 3.

V. EVALUATION

We have evaluated CloudChain in an in-house testbed
setup. The implementation details and obtained results are
discussed in this section.

A. Implementation & Testbed Setup

We have implemented a prototype of our proposed
framework using Hyperleder Fabric v1.3.0 [11],
Docker (https://www.docker.com/), and VirtualBox
(https://www.virtualbox.org/). For our in-house testbed
set up (Figure 4), we have considered a set of 3 CSPs
(C1, C2, and C3), forming a federation, with each CSP
having three emulated data centers (DC). Each CSP is a
workstation and to maintain the heterogeneity of resources,
we have taken different host configurations for each CSP
with C1, C2, and C3 having 256 GB, 20 GB, and 8 GB
memory respectively. These CSPs are running Linux kernel
and capable of spawning VMs using VirtualBox. They are
connected through the institute network, and we form a
docker swarm constituting these three hosts, and set up
an overlay network. Using Hyperledger Fabric, we form
three separate organizations with each CSP belonging to
a separate organization. Each CSP has one Fabric peer
node running in a docker container which is responsible
for proposing and committing transactions and maintaining
a copy of the blockchain ledger, and one orderer node
for participating in the consensus process. We have used
the endorsement based consensus mechanism as provided
by the Hyperledger Fabric. We have implemented the
CloudChain blockchain functionalities in the form of
chaincodes which are nothing but smart contracts. For
each transaction, we implemented appropriate key-level
endorsement policies which ensure that required number of
signatures must be present for a transaction to be valid.

B. Results

We have compared the VM placement time in three sce-
narios against a centralized broker based federation. In order
to ensure that remote VM placements always take place, we
have assumed that each CSP has one data center in a unique
location. In each scenario, each of the CSPs get 3 multi-
tier applications requests with different location constraints
and different number of VMs. In the first, second and third
scenarios, each CSP receives 4, 6 and 10 VM requests in
total within three multi-tier application requests respectively.



Figure 4. CloudChain implementation modules

12 18 30
Number of VM requests

0

50

100

150

200

250

300

M
ea
n 
VM

 p
la
ce
m
en
t t
im
e 
(s
) Broker based

CloudChain

Figure 5. Mean VM placement time

1 2 3
0

5

10

15

20

25

Nu
m
be

r o
f a

pp
s p

la
ce

d

Broker placement
CloudChain local placement
CloudChain remote placement

1 2

3
CloudChain

1

2
3

Broker

Figure 6. Placement across CSPs

In Figure 5, we observe that the mean placement time and
the standard deviation for each VM is very much comparable
in both the systems. It is of no doubt that the performance of
our proposed decentralized CloudChain system is not better
than that of a traditional centralized approach in terms of
VM placement latency. However, without compromising on
the performance, we achieve the benefits of a decentralized
system such as transparency, distributed control and fairness.

Next, we have carried out an experiment to justify the
fairness properties of CloudChain compared to a broker
based federation. We have considered 34 parallel multi-tier
application requests from end-users, with each application
requiring 2 VMs. In CloudChain, the number of applications
received by the CSPs C1, C2, and C3 are 16, 8, and 10
respectively. In broker based system, all the requests arrive at
the broker which then handles the placement. Figure 6 shows
the distribution of application placements across different
CSPs. We observe that in case of the broker based system,
most applications are placed in C1, followed by C2, and none
of the applications are placed in C3. This violates the fairness
property in the federation. In contrast, CloudChain provides
a much fair distribution of applications as it allows different
CSPs to act with autonomy.

VI. CONCLUSION AND FUTURE WORK

Towards the goal of removing central controlling authority
from a cloud federation and making it completely decentral-
ized, we have proposed a permissioned blockchain based
democratic cloud federation architecture called CloudChain
for IaaS provisioning. From an in-house implementation
and testing, we observe that CloudChain provides fairness,
autonomy, and transparency, with only marginal compromise
in performance as compared to a broker based architecture.
However, the current implementation of CloudChain does
not support advanced cloud functionalities, like live VM
migration, which we plan to explore as the future direction
of this work.

ACKNOWLEDGEMENT

We thank Dr. Praveen Jayachandran and Mr. Chander G
from IBM Research, India for assistance in implementation
with IBM Hyperledger Fabric.

REFERENCES

[1] I. Goiri, J. Guitart, and J. Torres, “Characterizing cloud
federation for enhancing providers’ profit,” IEEE CLOUD,
pp. 123–130, 2010.

[2] M. Assis and L. Bittencourt, “A survey on cloud federa-
tion architectures: Identifying functional and non-functional
properties,” Journal of Network and Computer Applications,
vol. 72, pp. 51 – 71, 2016.

[3] J. Mei, K. Li, Z. Tong, Q. Li, and K. Li, “Profit maximization
for cloud brokers in cloud computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 1, pp. 190–203,
Jan 2019.

[4] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An
overview of blockchain technology: Architecture, consensus,
and future trends,” in IEEE BigData, pp. 557–564.

[5] S. Kirkman, “A data movement policy framework for improv-
ing trust in the cloud using smart contracts and blockchains,”
in IEEE IC2E, 2018, pp. 270–273.

[6] D. K. Tosh, S. Shetty, P. Foytik, C. A. Kamhoua, and L. Njilla,
“Cloudpos: A proof-of-stake consensus design for blockchain
integrated cloud,” in IEEE CLOUD, 2018.

[7] I. Sukhodolskiy and S. Zapechnikov, “A blockchain-based
access control system for cloud storage,” in IEEE EIConRus,
2018.

[8] R. B. Uriarte, R. D. Nicola, and K. Kritikos, “To-
wards distributed sla management with smart contracts and
blockchain,” in IEEE CloudCom, 2018, pp. 266–271.

[9] A. Margheri, M. S. Ferdous, M. Yang, and V. Sassone, “A
distributed infrastructure for democratic cloud federations,” in
IEEE CLOUD, 2017, pp. 688–691.

[10] H. Zhou, X. Ouyang, Z. Ren, J. Su, C. de Laat, and Z. Zhao,
“A blockchain based witness model for trustworthy cloud
service level agreement enforcement,” in IEEE INFOCOM,
2019.

[11] E. Androulaki. et al., “Hyperledger Fabric: A distributed oper-
ating system for permissioned blockchains,” in 13th EuroSys,
2018.

[12] P.-L. Aublin, S. B. Mokhtar, and V. Quéma, “RBFT: Redun-
dant byzantine fault tolerance,” in 33rd IEEE ICDCS, 2013,
pp. 297–306.


