IEEE SCC 2019

CNeRG

Towards a Democratic Federation for Infrastructure Service Provisioning

Bishakh Chandra Ghosh (ghoshbishakh@iitkgp.ac.in), Sourav Kanti Addya, Anurag Satpathy, Soumya K Ghosh and Sandip Chakraborty

Department of Computer Science & Engineering Indian Institute of Technology Kharagpur

Cloud Federations

Collaboration among different **Cloud Service Providers** (CSPs), whereby they agree to mutually share their own resources for their overall benefit.

Cloud Federations

Collaboration among different **Cloud Service Providers** (CSPs), whereby they agree to mutually share their own resources for their overall benefit.

Motivation for cloud federation

- Sharing of computing resources.
- Aggregation of unused resources from different service providers.
- Bringing services closer to customers by maximizing the **geographical dispersion**.
- **Tackling data protection laws** that requires data to be stored within country's boundary.

Existing cloud federations

Mostly Centralized Approach:

1. Centralized cloud broker

arjuna 🚿 🛛 🛛 Bon FIRE

Existing cloud federations

Mostly **Centralized** Approach:

2. Centralized cloud exchange

Limitations of existing federations:

- 1. Profit sharing with central broker
- 2. Biasness of broker towards certain service providers
- 3. Price manipulation (*Broker can be malicious*)
- 4. Unfair dispute resolution
- 5. Central point of failure

Objective

Remove the central broker and design a transparent distributed system for cloud federation.

Centralized to Decentralized

10

Some related works

S. Kirkman	Data movement policy framework using smart contracts ^[1]	l with Ps
Sukhodolskiy et al.	Blockchain-based access control system for cloud storage ^[2]	oncerned tiple CSI
Zhou et al.	Blockchain based witness model for SLA monitoring ^[3]	Not co mu
Margheri et al.	Distributed infrastructure for democratic cloud federations ^[4]	Public Slockchain

S. Kirkman, "A data movement policy framework for improving trust in the cloud using smart contracts and blockchains," in IEEE IC2E, 2018, pp. 270–273.
I. Sukhodolskiy and S. Zapechnikov, "A blockchain-based access control system for cloud storage," in IEEE EIConRus, 2018.

[3] H. Zhou, X. Ouyang, Z. Ren, J. Su, C. de Laat, and Z. Zhao, "A blockchain based witness model for trustworthy cloud service level agreement enforcement," in IEEE INFOCOM, 2019.

[4] A. Margheri, M. S. Ferdous, M. Yang, and V. Sassone, "A distributed infrastructure for democratic cloud federations," in IEEE CLOUD, 2017, pp. 688–691.

Challenges

- A decentralized platform for exchange of infrastructure resources (VM) must be developed.
- The system must allow coordination between service providers while enforcing FLA, without the help of any broker.
- Cloud functions such as VM Placement and VM Migration needs to be coordinated over the decentralized architecture.
- Fair ordering of transactions must be ensured

Permissioned blockchain based decentralized exchange for democratic cloud federations: *CloudChain*

For simplicity we assume that the federation contains two types of service providers namely,

1. Demanding service providers:

Suffer from **resource limitations** and require other members of the federation to create instances for them at peak loads.

2. Supplying service providers:

Having abundant resources which goes unused.

CloudChain model overview

Components

1) CloudChain Blockchain: Distributed Ledger & Exchange State

2) Request Queue and Resource Bucket

3) Scheduler

4) Transaction Manager

5) VM Manager

Components

Request Queue (ReQ): queue of incoming multi-tier web application requests

Resource Bucket:

Bucket of available resources, which may include both local resources and exchange resources.

- 1) Local resource bucket (ResBlocal)
- 2) Exchange resource bucket (*ResBexchange*)

Scheduler: Coordinates all the components of CloudChain

Transaction Manager: An interface to the *CloudChain* Blockchain.

VM Manager: Manages creation, deletion and access to VMs.

CloudChain Blockchain serves as an information registry that maintains the current state of available resources and demand patterns. Thus it acts as a common marketplace where different CSPs can offer their unused or excess resources for outsourcing, and rent resources from other CSPs when required.

Exchange State											
Offerings			Requests			Associations					
ID	Supplying SP	Specs	Price/BTU	ID	Demanding SP	Offering Id	Duration	ID	Demanding SP	Offering Id	Duration
0 ₁	Cloud 1	2 Cores, 4GB, UK	15\$/Month	r ₁	Cloud 2	0 ₁	6 Months	a ₁	Cloud 3	O ₅	3 Months
0 ₂	Cloud 2	2 Cores, 8GB, US	18\$/Month	r ₂	Cloud 3	0 ₂	12 Months	a ₂	Cloud 5	0 ₄	7 Days
0 ₃	Cloud 1	2 Cores, 2GB, UK	0.16\$/Day								

CloudChain Blockchain

The high level **operations** that the CSPs can perform on the exchange are:

- 1) **Offer** a new resource
- 2) Modify an existing offering
- 3) Query for available resources offerings
- 4) Request to rent a resource
- 5) Grant/Reject a request

Testbed Setup:

• 3 Hosts, each acting as a cloud connected over the network.

Testbed Parameters.

Category	Value					
Number of CSP	3					
Number of DC per CSP	3					
C_1 Config	2.7 GHz, Intel Xeon(R) 48 core, 256 GB Memory					
C_2 Config	3.2 GHz, Intel Core i5 4 core, 20 GB Memory					
C_3 Config	2.7 GHz, Intel Core i3 4 core, 8 GB Memory					
Containerization	Docker 18.06					
Language used	Go 1.10, Python 2.7					

Testbed Setup:

• 3 Hosts, each acting as a cloud connected over the network.

• Hyperledger fabric for blockchain (v1.3.0)

Testbed Setup:

• 3 Hosts, each acting as a cloud connected over the network.

- Hyperledger fabric for blockchain (v1.3.0).
- Org1 **C1** Org2 Org3 C2 C3 **HYPERLEDGER** FARRIC

• Each cloud belongs to a separate organization, and runs a peer.

Testbed Setup:

• Each cloud runs its own orderer.

Testbed Setup:

- Each cloud runs its own orderer
- Create a docker swarm.
- Create overlay network.

Testbed Setup:

- Each cloud runs its own orderer.
- Create a docker swarm.
- Create overlay network.
- Chaincodes for CloudChain logic.

Testbed Setup:

- Each cloud runs its own orderer.
- The orderers use **BFT** protocol.
- Chaincodes for Cloud Exchange logic.
- **Endorsement policy** requiring the endorsement of the concerned demanding SP, supplying SP and the majority of other endorsing peers.

Results

- Mean VM placement time in broker based federation and *CloudChain*
- Three scenarios
- Each CSP receives 4, 6, and 10 VM requests in first, second and third scenarios respectively.
- In case of broker based federation all the requests arrive at the broker first.

Mean VM placement time

Very little compromise in performance

Results

- 34 multi-tier application requests
- *C1*, *C2* and *C3* receiving 16, 8 and 10 requests respectively.
- In case of broker based federation, all requests arrive at the broker

Distribution of user requests across different CSPs

C3 is starved in case of broker based system

CloudChain shows fair distribution

Conclusion and Future work

CloudChain over Federation brokers:

- Decentralized
- Transparent
- Autonomy
- Immutable
- Fairness

Conclusion and Future work

Future work

- Support for live VM migration
- FLA monitoring

Acknowledgements

Special thanks to:

Microsoft Research Travel Grant.

CNeRG for Travel Grant and constant support. (cnerg.iitkgp.ac.in)

Bishakh Chandra Ghosh (ghoshbishakh@iitkgp.ac.in), Sourav Kanti Addya, Anurag Satpathy, Soumya K Ghosh and Sandip Chakraborty