Decentralized Cross-Network Identity Management for Blockchain Interoperation

Bishakh Chandra Ghosh, Venkatraman Ramakrishna, Chander Govindarajan, Dushyant Behl, Dileban Karunamoorthy, Ermyas Abebe and Sandip Chakraborty

Indian Institute of Technology Kharagpur and IBM Research

Presenter: Bishakh Chandra Ghosh
Blockchain Interoperability

- Industry trend to create consortium networks as **minimum viable ecosystems**
 - with the minimum set of participants required to demonstrate short-term benefits

- **Different blockchain platforms**
Blockchain Interoperability

- Industry trend to create consortium networks as **minimum viable ecosystems**
 - with the minimum set of participants required to demonstrate short-term benefits

- Different blockchain platforms

- Interoperability
 - For business goals.
 - Verifiable Data transfer
Proof by Attestation

● **Relay-Based Interoperability Using Proofs and Attestations**

● Supports Multi-party trust

● Uses existing endorsement / validation mechanisms of the blockchain platforms such as Fabric, Corda etc..

1. Query
2. Validate access control policies
3. Collect attestations for proof
4. Response with proof
5. Validate attestations
Proof by Attestation

- Relay-Based Interoperability Using Proofs and Attestations
- Supports Multi-party trust
- Uses existing endorsement / validation mechanisms of the blockchain platforms such as Fabric, Corda etc.

- Depends on public key / certificates of participants of foreign network.
- **Identity configuration is a requirement**
Identity Configuration

Identity Exchange

1. Query
2. Validate access control policies
3. Collect attestations for proof
4. Response with proof
5. Validate attestations

Trade Finance

Trade Logistics
Objective

To design a secure distributed identity management infrastructure with a set of protocols linking permissioned networks, laying the basis for blockchain interoperation.
Challenges

- Identity within closed networks have no manifestation outside
- Platform heterogeneity
- Identity management heterogeneity
- Lack of common identity infrastructure
- Security
- Consensus on identity
Design Goals

- **DLT Agnostic**
 - The solution should not be tied to, or only applicable for, any particular DLT.

- **No central identity registry**
 - Networks should be free to choose identity registries and providers (or use their existing ones).

- **Networks remain autonomous**
 - Networks must retain their autonomy while gaining the ability to interoperate universally.

- **Minimal change to existing code and configurations**
 - No change should be required in a network’s regular operations.
 - Minimal changes to existing code and configurations of already deployed networks.
Solution Overview

Identity Plane
- Sync foreign network info
- Trust anchor/basis
- Identity and configuration

Data Plane
- Proof Verification & Data Acceptance (DESTINATION)
- Request and Authentication
- Data and Proof
- Access Control & Proof Generation (SOURCE)

Exchange and configuration of identity

Data requests and proof validation.
Decoupling Identity from Network

- Blockchain network specific identity is confined within its boundary.

- For identity exchange identity needs to be:
 - Platform agnostic
 - Decoupled from the network
Decoupling Identity from Network

- Blockchain network specific identity is confined within its boundary.

- For identity exchange identity needs to be:
 - Platform agnostic
 - Decoupled from the network

- We use **self-sovereign identity (SSI)** in the identity plane.
Identity Mappings

For interoperation, the following identity information of a participant must be validated:

- **Real World Identity**
 - Eg. Company name, address, etc..

- **Network membership**
 - Proof that the subject is a participant of the concerned network.

- **Blockchain platform specific cryptographic keys & certificates**
 - For validating attestations in data plane
Building Blocks

- **Decentralized Identifiers (DIDs)**
 - SSI independent of any registry or provider

- **Verifiable Credentials (VCs)**
 - Digital credentials issued to a DID

- **Verifiable Data Registry (VDR)**
 - Decentralized implementation – DLT based
 - Schema of VCs
 - Revocation lists

https://www.w3.org/TR/vc-data-model/
Trust Anchors

- No central identity provider
- Trust anchors act as basis for identity validation

A. Organization Identity validators (OINs)

- DID by default is not associated with any real-world identity.
- OINs are trust anchors with well known real world identities.
- OINs associate DIDs to their real-world identity.

B. Participant membership validators (PMVs)

- Validate membership of a DID owner in a permissioned consortium.
- PMVs are trust anchors that are well known representatives of certain networks. Eg: IBM or Walmart, both reputed entities, could act as validators for the membership of the IBM Food Trust network, since they are well known key participants in the same.
Identity Plane Architecture

Trust Anchors
- Organization Identity Validators
- Participant Membership Validators

DLT Based Verifiable Data Registry (VDR)
- Real-world DID
- VC Auth Key
- VC Schema
- Revocation Registry

Interoperation Identity Network (IIN)
- IIN
- IIN
- IIN
- IIN

Distributed Identity Infrastructure
- IIN Agents

Network Identity Managers
- IIN Agents

Sync foreign network Identity, credentials, and certificates

DATA PLANE
- Proof Verification & Data Acceptance (DESTINATION)
- Access Control & Proof Generation (SOURCE)

Network Identity Network (IIN)
- IIN Agents

Networks
- Network A
- Network B
Cross-Network Participant Validation Protocol Overview

- NETWORK 2 is configuring the identity of Org3 of NETWORK 1
Cross-Network Participant Validation Protocol Overview

NETWORK 2
- IIN Agent Org1
- IIN Agent Org2

NETWORK 1
- IIN Agent Org3

IIN
- PMV
- OIN
- VDR

Organizations:
- Org1
- Org2
- Org3

Org3 configures its own identity
- Initialize Real-world DID: DID\textsubscript{Org3}
- Issue Network Membership VC
- Issue Self-signed VC for Platform specific certificates

Org2 Validates Org3's Identity
- Validate DID\textsubscript{Org3} real world identity and fetch verification key
- Validate membership VC
- Check Revocation Registry
- Fetch and validate platform specific certificates
Cross-Network Participant Validation Protocol Overview

Collect signatures through application level flow

Request Signature over Identity_{Org3}

Validate Identity_{Org3}

Signature

Configure Ledger with Identity_{Org3}

Validate signatures and update Identity_{Org3}
Implementation

Exchange VPs for Membership credential and Fabric certificate

Collect signatures in application level flow
Use Case Implementation

Obtain Bill of Lading (*Inter-Blockchain*)

Simplified We.Trade

SELLER'S BANK

BUYER

Obtain Letter of Credit (*Inter-Blockchain*)

CARRIER

Simplified TradeLens

BUYER'S BANK

IBM (Trust Anchor)

Maersk (Trust Anchor)

NODE POOL

SHARED LEDGER

HYPERLEDGER FABRIC

Identity Plane
Conclusion

- Decentralized identity management plane for facilitating interoperation.
- DLT agnostic architecture
- Based on SSI and Verifiable Credential concepts
- No changes to existing DLT platform is required. Only some additional smart contracts for identity registry is required.
Future Work

- Protocols for Network Formation and Discovery without external trust anchors.
- Implementation with Corda and Besu
- Performance evaluations
Thank You

Feel free to send your questions at: ghoshbishakh@gmail.com