
METHODS AND APPARATUS FOR BLOCKCHAIN INTEROPERABILITY

AND IDENTITY MANAGEMENT

Bishakh Chandra Ghosh





METHODS AND APPARATUS FOR BLOCKCHAIN INTEROPERABILITY

AND IDENTITY MANAGEMENT

Thesis submitted to the
Indian Institute of Technology, Kharagpur

For award of the degree

of

Doctor of Philosophy

by

Bishakh Chandra Ghosh

Under the supervision of

Prof. Sandip Chakraborty

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

September 2023

©2023 Bishakh Chandra Ghosh. All rights reserved.





APPROVAL OF THE VIVA-VOCE BOARD

Date: / / 22

Certified that the thesis entitled “Methods and Apparatus for Blockchain Inter-
operability and Identity Management” submitted by Bishakh Chandra Ghosh to
the Indian Institute of Technology, Kharagpur, for the award of the degree of Doctor
of Philosophy has been accepted by the external examiners and that the student has
successfully defended the thesis in the viva-voce examination held today.

(Member of DSC) (Member of DSC) (Member of DSC)

(Supervisor)

(External Examiner) (Chairman)





CERTIFICATE

This is to certify that the thesis entitled “Methods and Apparatus for Blockchain

Interoperability and Identity Management”, submitted by Bishakh Chandra Ghosh

to the Indian Institute of Technology, Kharagpur, for the partial fulfillment of the

award of the degree of Doctor of Philosophy in Computer Science and Engineer-

ing, is a record of bona fide research work carried out by him under my supervision

and guidance. The thesis in my opinion, is worthy of consideration for the award of

the degree of Doctor of Philosophy in accordance with the regulations of the Insti-

tute. To the best of my knowledge, the results embodied in this thesis have not been

submitted to any other University or Institute for the award of any other Degree or

Diploma.

Sandip Chakraborty

Associate Professor

Department of Computer

Science and Engineering,

IIT Kharagpur

Date:





DECLARATION

I certify that

a. The work contained in this thesis is original and has been done by me under

the guidance of my supervisors.

b. The work has not been submitted to any other Institute for any degree or

diploma.

c. I have followed the guidelines provided by the Institute in preparing the the-

sis.

d. I have conformed to the norms and guidelines given in the Ethical Code of

Conduct of the Institute.

e. Whenever I have used materials (data, theoretical analysis, figures, and text)

from other sources, I have given due credit to them by citing them in the text

of the thesis and giving their details in the references.

f. Whenever I have quoted written materials from other sources, I have put them

under quotation marks and given due credit to the sources by citing them and

giving required details in the references.

Bishakh Chandra Ghosh





Dedicated to my parents

Kanika Ghosh
and

Late Bijan Bihari Ghosh





ACKNOWLEDGMENTS

This thesis is an outcome of a long journey, and in this section, I humbly appre-
ciate all the people without whose guidance and support it would not have been pos-
sible. Firstly, I would like to express my deepest gratitude towards my supervisor
Dr. Sandip Chakraborty, who motivated me toward this academic goal right from
my undergraduate days. Apart from his guidance in research, his unflinching push
towards developing practical systems with real-world significance provided me with
a flourishing environment that is nothing less than an oasis in today’s result-oriented
academic landscape. It is only because of his cheerful attitude and contagious pos-
itive spirit that I could get through the ever-demanding journey of Ph.D.
I want to thank Venkatraman Ramakrishna for mentoring me from my internship
days at IBM Research - India, till the submission of my Ph.D. thesis. Through
countless technical discussions and brainstorming sessions, along with insightful
suggestions from the industry perspective, he helped me gain the required technical
expertise for achieving impactful research outcomes.
I sincerely thank Prof. C Pandu Rangan and Prof. Hans-Georg Fill for generously
dedicating their time to review the thesis, providing insightful comments and sug-
gestions that significantly enhanced its quality.

I would also like to sincerely thank my Doctoral Scrutinee Committee (DSC), –
Prof. Niloy Ganguly, Prof. Arobinda Gupta, Dr. Somindu Chaya Ramanna, and
Dr. Goutam Sen, for their advice and constructive criticisms, which helped me to
improve the thesis.
I thank the current HoD, Prof. Arobinda Gupta, the past HoDs, Prof. Dipanwita
Roy Chowdhury and Prof. Sudeshna Sarkar, and all the Department of Computer
Science and Engineering faculties for extending their guidance in both technical
and administrative processes. I express my gratitude to the director, Prof. Virendra
Kumar Tewari, all the Deans, and other officials of IIT Kharagpur, whose collective
efforts have provided us with an environment for world-class research and studies.
I also thank all the anonymous reviewers of all my publications who have helped
me improve the quality of this thesis.
I want to thank Dr. Rajeev Shorey, UQIDAR – IIT Delhi, for giving me the oppor-
tunity to serve as a web chair in the COMSNETS conference organizing committee.

This thesis is a result of many people’s collective efforts, especially my collabora-
tors, to whom I convey my deepest gratitude. Among them, Dhinakaran Vinayaga-
murthy and Sikhar Patranabis were more like mentors who nurtured my expertise in
cryptography and security. I thank Krishnasuri Narayanam, Chander Govindarajan,



xiv

Dushyant Behl, Dileban Karunamoorthy, and Ermyas Abebe for their support. I
want to convey my sincere gratitude to Prof. Soumya K. Ghosh, and Sourav Kanti
Addya, who provided me with much-needed encouragement during my initial days
at IIT Kharagpur. I have been fortunate enough to work with fantastic peers, student
collaborators, and interns. Thank you, Shubha Brata Nath, Tanay Bhartia, Nishant
Baranwal Somy, and Hrishabh Sharma. I have learned a lot from all of you.

Dr. Sujoy Saha’s mentorship and guidance throughout my undergraduate days and
beyond provided me the courage to pursue Ph.D. I am grateful to him and Prof.
Subrata Nandi for providing me with the best possible opportunities during my time
at NIT Durgapur and building the foundation within me to pursue higher studies. I
sincerely thank my peers at NIT Durgapur, Hridoy Datta, Partha Sarathi Paul, King-
shuk De, Prithviraj Pramanik, Arka Prava Basu, and Sunny Saurav for our fruitful
technical discussions over countless cups of tea.

I have been fortunate to learn from some of the best faculties at IIT Kharagpur, as
well as NIT Durgapur. I was privileged to learn in-depth about cryptography and
network security from Dr. Jaydeep Howlader, and Prof. Debdeep Mukhopadhyay.
Dr. Debasis Mitra’s art of teaching made me realize that an instructor can make
learning any subject/discipline equally exciting. I learned the most about computer
science as a whole while attending his classes on data structures and algorithms,
computer architecture, and VLSI.

My sincere gratitude goes to Sadhan-da, Bappa-da, Durga-da, and other staff from
the CSE department for their timely assistance in handling the official procedures.
I must mention Moni masi, whose homely meals helped me survive; thank you.

Peers, seniors, and juniors of my lab and other labs played a key role in shaping me
toward where I stand. I am thankful to Bidisha di, Ayan da, Basabdatta di, Rohit da,
Surjya da, Satadal da, Madhumita di, Paramita di, for your support and guidance
as wonderful seniors. Thanks to Bishal da and Anurag da for helping me in the
server team. I thank Punyajoy, Rajdeep da, Abhishek da, Soumi di, Binny da, Rima
di, Kalyani di, Soumyadeep da, Mainul da, Gourab da, Salma di, Paramita Das di,
Harsh, Soumya, for being fantastic peers and making my time at IIT Kharagpur
more enjoyable.
I am fortunate to have made great friends during this journey, and I value these
friendships more than the degree. I lived, learned, and grew with them for four
years. I was inspired by Sumitro da’s meticulous work management and attention
to detail, though I could not absorb enough to get close to his skills. Snigdha di
often provided me (and others in the lab) with her philosophical take on subjects
which was in contrast to our usual bluntness. Souvic gave us the much-needed en-
ergy after the COVID lockdown period, which revived us into the usual flow of life.
Abhijit da is an ocean of knowledge from whom I have learned the most in these
four years as a CS engineer. His down-to-earth attitude is something I look up to,
and Soumyajit da is another man with a similar trait. The only thing that amazes



xv

me more than Soumyajit da’s knowledge as a researcher is his enthralling personal-
ity. Our late-night music sessions with Soumyajit da and Arnab da are some of the
best memories of my time at IIT Kharagpur. Thanks to Arnab da’s guitar tabs and
research papers, I now get to learn cryptography and music from the same author!
The morning football and cricket matches gave the much-needed break from the
usual lab routine. Thanks to Soumyadyuti da, Akashdeep, Siddhartha da, Anirban
da, and Manaar da for arranging them and including me despite my eye-watering
skills. My performance in playing CS was perhaps much better. Thanks to Durba
di, SD, SK, Kungfu too for joining the fights. I want to thank Avirup for tagging
along with me through the initial days at Kgp.

I want to thank and convey my best wishes to my current peers, Lalan, Utkalika,
Anirban (Add), Sugandh, Debasree di, Aritra, Prasenjit (foss), and Argha. I wish I
could spend some more days shouting ‘fossils’, going to PD, and in general, doing
what ‘paagal log’ do. You all are insanely talented, and I will keep on congratulat-
ing you in the future on the countless successes that you are about to get.

Outside the boundaries of IIT Kharagpur, I was fortunate to have friends including
Rajendra, Sayan (Kuila), Sumit, Subhadip, Arkadipta, Anirban, Kajal, Bumba da,
Deepjyoti, Sayan (sei sei), who have been by my side for many, many years now.

This thesis is dedicated to the constants of my life. Arpita has always been there for
me through good times and bad times. Despite the pressure of her own Ph.D. and
her own issues, her constant presence, undwindling support, and subtle scoldings
steered me clear of some of the toughest times of my life. Thank you for being the
friend I can rely on and the pillar I can lean on. If I am asked to name my role
models, my brother Binayak is always going to be on that list. On the one hand, he
is like a shadow who is always there if I need to look back and reach out; on the
other hand, he is like a milestone that lures me to greater heights. It is his financial
as well as emotional backing that allowed me to leave a job and pursue higher edu-
cation. I dedicate this thesis to the loving memory of my father Bijan Bihari Ghosh.
The most important person in my life is my mother, Kanika Ghosh. Whatever big
or small achievements I have is because of her impeccable parenting, unconditional
support, and unlimited blessings. No words can ever express how indebted I am to
her. Thank you.

Bishakh Chandra Ghosh
IIT Kharagpur, India





Author’s Biography

Bishakh Chandra Ghosh received his B.Tech. degree in Information Technology
from National Institute of Technology Durgapur, India in 2018. His areas of inter-
est includes distributed systems, cloud computing, and web technology. He spent
three months with IBM Research, India as an intern in 2020, where he worked on
blockchain interoperability.

Publications from the Thesis

1. Bishakh Chandra Ghosh, Sikhar Patranabis, Dhinakaran Vinayagamurthy,
Venkatraman Ramakrishna, Krishnasuri Narayanam, Sandip Chakraborty, “Pri-
vate Certifier Intersection”, 2023 Network and Distributed System Security
(NDSS) Symposium, San Diego, California, 27 February − 3 March 2023.

2. Bishakh Chandra Ghosh, Tanay Bhartia, Sourav Kanti Addya, Sandip Chakraborty,
“Leveraging Public-Private Blockchain Interoperability for Closed Consor-
tium Interfacing”, 2021 IEEE Conference on Computer Communications
(IEEE INFOCOM), Virtual Conference, 10 May − 13 May 2021.

3. Bishakh Chandra Ghosh, Venkatraman Ramakrishna, Chander Govindara-
jan, Dushyant Behl, Dileban Karunamoorthy, Ermyas Abebe, Sandip Chakraborty,
“Decentralized Cross-Network Identity Management for Blockchain Interop-
eration”, 2021 IEEE International Conference on Blockchain and Cryptocur-
rency (ICBC), Virtual Conference, 3 May − 6 May 2021.

4. Bishakh Chandra Ghosh, Dhinakaran Vinayagamurthy, Venkataraman Ra-
makrishna, Krishnasuri Narayanam, Sandip Chakraborty, “Privacy-Preserving
Negotiation of Common Trust Anchors Across Blockchain Networks”, 2022
IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
Virtual Conference, 2 May − 5 May 2022 [Short Paper].

5. Bishakh Chandra Ghosh, Sourav Kanti Addya, Anurag Satpathy, Soumya
K. Ghosh and Sandip Chakraborty, “Towards a Democratic Federation for
Infrastructure Service Provisioning”, 2019 IEEE International Conference
on Services Computing (SCC), Milan, Italy, 8 July − 13 July 2019. [Short
Paper]

6. Bishakh Chandra Ghosh, and Sandip Chakraborty, “Trustless Collabora-
tive Cloud Federation”, in IEEE Transactions on Cloud Computing. [Under
Revision]



xviii

Other Publications

The following is a list of publications during my tenure as a student at IIT
Kharagpur, which are not a part of this thesis.

1. Sourav Kanti Addya, Anurag Satpathy, Bishakh Chandra Ghosh, Sandip
Chakraborty, Soumya K Ghosh, Sajal K Das. “Geo-distributed Multi-tier
Workload Migration over Multi-timescale Electricity Markets” IEEE Trans-
actions on Services Computing 2023.

2. Dhaval Thummar, Yerramaddu Jahnavi, Mudavath Prathyusha, Sayad Sha-
hanaz, Bishakh Chandra Ghosh, Sourav Kanti Addya. “DeSAT: Towards
Transparent and Decentralized University Counselling Process” IEEE Inter-
national Conference on Blockchain (Blockchain) 2022.

3. Yerramaddu Jahnavi, Mudavath Prathyusha, Sayad Shahanaz, Dhaval Thum-
mar, Bishakh Chandra Ghosh, Sourav Kanti Addya. “Democratizing Uni-
versity Seat Allocation using Blockchain” 14th International Conference on
COMmunication Systems & NETworkS (COMSNETS) [Demo] 2022.

4. Chander Govindarajan, Bishakh Chandra Ghosh, Nitin Gaur, Venkatraman
Ramakrishna, Dushyant K. Behl, Petr Novotny. “Blockchain Declarative De-
scriptor for Cross-network Communication” US Patent Application 2021.

5. Petr Novotny, Venkatraman Ramakrishna, Chander Govindarajan, Dushyant
K Behl, Bishakh Chandra Ghosh, Nitin Gaur. “Blockchain network identity
management using ssi” US Patent Application 2021.

6. Sourav Kanti Addya, Anurag Satpathy, Bishakh Chandra Ghosh, Sandip
Chakraborty, Soumya K Ghosh, Sajal K Das. “CoMCLOUD: Virtual Ma-
chine Coalition for Multi-Tier Applications over Multi-Cloud Environments.”
IEEE Transactions on Cloud Computing. 2021.

7. Partha Sarathi Paul, Bishakh Chandra Ghosh, Ankan Ghosh, Sujoy Saha,
Subrata Nandi, Sandip Chakraborty. “Disaster Strikes! Internet Blackout!
What’s the Fate of Crisis Mapping?” 22nd International Conference on Human-
Computer Interaction with Mobile Devices and Services (MobileHCI) 2020.

8. Nishant Baranwal Somy, Abhijit Mondal, Bishakh Chandra Ghosh, Sandip
Chakraborty. “System call interception for serverless isolation.” SIGCOMM
[Poster] 2020.

9. Bishakh Chandra Ghosh, Sourav Kanti Addya, Nishant Baranwal Somy,
Shubha Brata Nath, Sandip Chakraborty, Soumya K. Ghosh. “Caching Tech-
niques to Improve Latency in Serverless Architectures.” International Con-
ference on COMmunication Systems & NETworkS (COMSNETS) [Poster]
2020.



xix

10. Partha Sarathi Paul, Bishakh Chandra Ghosh, Ankan Ghosh, Sujoy Saha,
Subrata Nandi, Sandip Chakraborty. “Aco-Wi : Acoustic Initiated Wi-Fi
Peer-group Communication for Opportunistic Messaging” 22nd International
Conference on Human-Computer Interaction with Mobile Devices and Ser-
vices (MobileHCI) [Late Breaking Results] 2020.

11. Sourav Kanti Addya, Anurag Satpathy, Bishakh Chandra Ghosh, Sandip
Chakraborty and Soumya K. Ghosh “Power and Time aware VM Migration
for Multi-tier Applications over Geo-distributed Clouds” IEEE 12th Interna-
tional Conference on Cloud Computing (CLOUD) 2019.

12. Partha Sarathi Paul, Bishakh Chandra Ghosh, Hridoy Sankar Dutta, King-
shuk De, Arka Prava Basu, Prithviraj Pramanik, Sujoy Saha, Sandip Chakraborty,
Niloy Ganguly, and Subrata Nandi. “CRIMP: Here crisis mapping goes of-
fline.” Journal of Network and Computer Applications 2019.

13. Partha Sarathi Paul, Chandrika Mukherjee, Bishakh Chandra Ghosh, Sudipta
Pandit, Sujoy Saha, Subrata Nandi. “On designing a fast-deployable’localized’GIS
platform for using’offline’during post-disaster situation” 20th International
Conference on Distributed Computing and Networking (ICDCN) [EmeRTeS
Workshop] 2019.





ABSTRACT

Development of permissioned distributed ledger technology has introduced block-

chains as a viable solution for decentralizing business-to-business interactions in

closed consortium networks. Consequently, in recent years, apart from the usual

applications around cryptocurrencies, blockchain has seen application in enterprise

scenarios such as supply chain, trade finance, logistics, energy trading, etc. How-

ever, such rapid adoption and deployment of permissioned networks have intro-

duced technical fragmentation in terms of protocols, algorithms, formats, architec-

ture, and policies (e.g. governance models). This heterogeneity stands as a barrier

between different permissioned consortium blockchain networks that wish to in-

teroperate and communicate for broader business goals. Moreover, permissioned

distributed ledgers by design were made private so that entities that are not con-

sortium members and, thus outside the network boundary, have no visibility over

the network’s data, assets, or functions. As a result, there are no means for the

consortium to communicate with external entities such as end-users or consumers

to which the businesses that form the consortium might need to dispense services.

This thesis studies the challenges, existing works, and gaps in both permissionless-

permissioned and permissioned-permissioned blockchain interoperability and in-

troduces methods and apparatus for enabling interoperability.

Towards enabling permissioned consortium blockchains to communicate with

their end-consumers in the open network, this thesis proposes the first framework

and set of protocols for permissionless-permissioned blockchain interoperability.

This includes a mechanism allowing the transfer of data such as end-consumer

requests, from the open network to the consortium, while ensuring consensus of

the consortium participants on the data and the order in which the data arrive. An-

other protocol facilitates verifiable transfer of data from the consortium to the public

blockchain. A proof-of-concept implementation for the use case of cloud federa-

tions and scalability evaluations demonstrates the system’s viability.

Existing protocols for inter-consortium verifiable transfer of data require the

pre-configuration of identities such as public keys / certificates of the blockchain

participants. For robust permissioned-permissioned interoperability while elimi-

nating manual identity configuration, in this thesis, we propose an architecture and



xxii

protocols for exchanging identities across permissioned blockchain networks. We

introduce a decentralized identity infrastructure for trust basis that utilizes the de-

centralized identifier and verifiable credential concepts. Our solution requires min-

imal changes to the existing deployed networks, and we demonstrate its usability

by applying it in a trade-finance and trade-logistics interoperability scenario.

Determining a common trust basis is an essential requirement for cross-blockchain

identity exchange. However, revealing all trust anchors results in loss of privacy

since the trust anchors are often well-known organizations such as governments,

NGOs, large companies, political organizations, etc. Revealing a trust anchor re-

veals the entity’s association with the same. We develop protocols for privacy pre-

serving negotiation of common trust anchors across blockchain networks to facili-

tate cross-chain identity exchange. We propose two variants of solutions, one with

the active participation of the trust anchors themselves and the other without involv-

ing the trust anchors using secure multiparty computation. Through experiments,

we evaluate the efficiency of our protocol, and we also prove its security against

malicious adversaries.

Finally, we extend the privacy-preserving trust anchor negotiation for blockchains

to a more general use case of any verifiable credential presentation flow that requires

a common credential certifier. We formally define this problem as ‘private certi-

fier intersection’ (PCI). Through a novel extension of secret sharing based secure

multiparty computation protocols for elliptic curve pairings, we introduce efficient

solutions for two different variants of PCI. We perform a detailed evaluation of the

protocols on consumer hardware in a real-world setting by placing parties at two

different continents.

To summarize, we introduce methods and apparatus for blockchain interoper-

ability and identity management for facilitating cross-chain interactions between

permissioned networks and permissionless networks, as well as between different

permissioned networks. Bridging the gaps between different decentralized systems,

our conrtibutions pave the way for end-to-end connected decentralized networks

starting from closed groups of entities such as businesses, and ending at the open

network of end-users.

Keywords: blockchain; identity; distributed ledger technology; interoperability



Contents

Table of Contents xxiii

List of Figures xxvii

List of Tables xxix

List of Abbreviation and Symbols xxxi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Enabling Public-Private Blockchain Interoperability . . . . . . . . 6
1.2.2 Identity Exchange across Permissioned Blockchains for Enabling

Interoperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Cross-chain Negotiation of Common Trust Anchors . . . . . . . . 7
1.2.4 Determining Common Trusted Credential Issuers . . . . . . . . . . 7

1.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Public-Private Blockchain Interoperability for Service Decentral-

ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Decentralized Cross-Network Identity Interoperation . . . . . . . . 10
1.3.3 Cross-chain Negotiation of Common Trust Anchors . . . . . . . . 12
1.3.4 Private Certifier Intersection . . . . . . . . . . . . . . . . . . . . . 14

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Background and Related Work 19
2.1 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Permissionless blockchain . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Permissioned blockchain . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Decentralized Identifiers and Credentials . . . . . . . . . . . . . . . . . . . 29
2.4 Interoperability in Blockchains . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Public-public Blockchain Interoperability . . . . . . . . . . . . . . 35
2.4.2 Private-private Blockchain Interoperability . . . . . . . . . . . . . 37

xxiii



xxiv CONTENTS

2.4.3 Public-private Blockchain Interoperability . . . . . . . . . . . . . . 38
2.5 Cross-Blockchain Identity Management . . . . . . . . . . . . . . . . . . . 39
2.6 Trust Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Public-Private Blockchain Interoperability 43
3.1 System Model and Design Challenges . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.2 Design Philosophy and Challenges . . . . . . . . . . . . . . . . . . 47

3.2 Decentralized Consortium Interface . . . . . . . . . . . . . . . . . . . . . 48
3.2.1 Regular Consensus (Mining) over Public Blockchain . . . . . . . . 49
3.2.2 Consensus on Consensus . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Secure and Verifiable Response Transfer . . . . . . . . . . . . . . . 53
3.2.4 Optimizing the Latency for Signature Collection . . . . . . . . . . 55

3.3 Use Case Implementation: Cloud Federation . . . . . . . . . . . . . . . . . 57
3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1 Platform Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.2 End-to-end Testbed experiments . . . . . . . . . . . . . . . . . . . 61
3.4.3 Mininet scalability experiments . . . . . . . . . . . . . . . . . . . 65

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Decentralized Cross-Network Identity Interoperation 69
4.1 Decentralized Group Identity Management . . . . . . . . . . . . . . . . . . 71
4.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.3 Identity Exchange Protocol . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Use Case for Hyperledger Fabric . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.1 Distributed Identity Infrastructure . . . . . . . . . . . . . . . . . . 84
4.3.2 Fabric Network Organizations and Identity Providers . . . . . . . . 85
4.3.3 IIN Agents within a Fabric Network . . . . . . . . . . . . . . . . . 86
4.3.4 Protocol: Syncing Foreign Identities through Consensus . . . . . . 87

4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.1 Generality and Flexibility . . . . . . . . . . . . . . . . . . . . . . 88
4.4.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.3 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.4 Ease of Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.5 Possible Technical Improvements . . . . . . . . . . . . . . . . . . 91

4.5 Discussion on Real-World Deployment . . . . . . . . . . . . . . . . . . . 92
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Cross-chain Negotiation of Common Trust Anchors 97
5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



CONTENTS xxv

5.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.1 Active participation of TAs . . . . . . . . . . . . . . . . . . . . . . 102
5.2.2 Without active participation of TAs . . . . . . . . . . . . . . . . . 103

5.3 MPC protocol for TA Negotiation . . . . . . . . . . . . . . . . . . . . . . 104
5.3.1 Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.2 Definition of PTAN in Real-Ideal Paradigm . . . . . . . . . . . . . 106
5.3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.4 Formal Description of the Protocol . . . . . . . . . . . . . . . . . . 109
5.3.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Private Certifier Intersection 119
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1.1 Overview of Contributions . . . . . . . . . . . . . . . . . . . . . . 125
6.2 Private Certifier Intersection (PCI) . . . . . . . . . . . . . . . . . . . . . . 128

6.2.1 Defining a PCI Protocol . . . . . . . . . . . . . . . . . . . . . . . 129
6.2.2 Security of PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.2.3 Generic Construction of PCI . . . . . . . . . . . . . . . . . . . . . 134

6.3 MPC for Elliptic Curve Pairings . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.1 Tier-1: MPC for Basic Fp Operations . . . . . . . . . . . . . . . . 138
6.3.2 Tier-2: MPC over any Generic Group . . . . . . . . . . . . . . . . 142
6.3.3 Tier-3: MPC over EC Pairings . . . . . . . . . . . . . . . . . . . . 146

6.4 PCI-Any-DC using ECDSA signature scheme . . . . . . . . . . . . . . . . 149
6.5 PCI-All using BLS signature . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.6.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 160
6.6.2 Component wise performance analysis . . . . . . . . . . . . . . . 160
6.6.3 End-to-end performance analysis . . . . . . . . . . . . . . . . . . 163

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7 Conclusion and Future Work 171
7.1 Directions of Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.1.1 Protocols for Blockchain Network Discovery . . . . . . . . . . . . 172
7.1.2 Blockchain Network Identifier . . . . . . . . . . . . . . . . . . . . 173
7.1.3 Efficient Trust Negotiation Protocols . . . . . . . . . . . . . . . . . 173

Bibliography 174

A Multi-Party PCI Definition 193

B Formal Proofs of Security of PCI 197
B.1 Proof of Security of ECDSA-based PCI-Any-DC . . . . . . . . . . . . . . 197
B.2 Proof of Security of BLS-based PCI-All . . . . . . . . . . . . . . . . . . . 200



xxvi CONTENTS

C Extensions to Multi-Party PCI 203
C.1 Extending ECDSA PCI-Any-DC to n-Party PCI-Any-DC . . . . . . . . . . 203
C.2 Extending BLS PCI-All to n-Party PCI-All . . . . . . . . . . . . . . . . . . 205



List of Figures

2.1 A typical Verifiable Credential and Verifiable Presentation workflow that
utilizes DID documents and schema maintained in a Verifiable Data Reg-
istry [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Transferring Consumer Requests from Public Blockchain to the Consor-
tium Members (CMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Secure and Verifiable Data Transfer from CMs to Consumers . . . . . . . . 49
3.3 Propagation Contract: Consensus on Consensus . . . . . . . . . . . . . . . 51
3.4 CollabCloud modules and Testbed setup . . . . . . . . . . . . . . . . . . . 59
3.5 Transaction commitment latency in public blockchain indicating PoW-based

Ropsten test network has a higher transaction processing time compared to
the PoA-based Rinkeby network. . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Gas consumption of the smart contracts of CollabFed, compared to other
popular smart contracts. CollabFed shows acceptable gas consumption. . . 62

3.7 Fair Scheduling Latency: Fabric vs Burrow . . . . . . . . . . . . . . . . . 63
3.8 Fabric Static Scheduling vs Burrow Fair Scheduling . . . . . . . . . . . . . 63
3.9 VM Provisioning Latency . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.10 Sign. Collection Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.11 CPU Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.12 Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.13 Burrow scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.14 BLS scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Generalized Cross-Network Data Transfer Protocol . . . . . . . . . . . . . 70
4.2 Architecture to enable identity plane exchanges . . . . . . . . . . . . . . . 75
4.3 Phase (A) of Identity Exchange Protocol - Configure DID and Membership

VC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Phase (B) of Identity Exchange Protocol - Validate DID and membership

of foreign network organization . . . . . . . . . . . . . . . . . . . . . . . 81
4.5 Phase (C) of Identity Exchange Protocol - Fetch blockchain network-issued

identity information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6 Phase (D) of Identity Exchange Protocol - Update identity in the ledger . . 82
4.7 End-to-end Identity Exchange Protocol . . . . . . . . . . . . . . . . . . . . 83

xxvii



xxviii LIST OF FIGURES

4.8 Simplified Cross-Network Trade Use Case . . . . . . . . . . . . . . . . . . 84
4.9 IIN Components and Connections for Fabric . . . . . . . . . . . . . . . . . 86

5.1 Two interoperating networks with some common TAs . . . . . . . . . . . . 98
5.2 Privacy-Preserving Trust Anchor Negotiation . . . . . . . . . . . . . . . . 100
5.3 Execution time – (a) with varying set sizes for both parties, (b) keeping one

set size constant at 20, while varying the other. . . . . . . . . . . . . . . . . 114
5.4 Data communication overhead – (a) with varying set sizes for both parties,

and (b) keeping one set size constant at 20, while varying the other. . . . . . 114
5.5 Execution time with varying link latency. . . . . . . . . . . . . . . . . . . 115

6.1 Private Set Intersection (PSI): Match Values . . . . . . . . . . . . . . . . . 123
6.2 Private Certifier Intersection (PCI): Match Certificates with Common Is-

suers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3 Ideal functionality FPCI in the two-party setting . . . . . . . . . . . . . . . 132
6.4 Ideal functionality for MPC over field operations in Fp . . . . . . . . . . . 139
6.5 Ideal functionality for MPC over the group operations in G, which includes

basic EC operations and the operations over the output group of a pairing.
We assume that F [G] also includes all Tier-1 sub-functionalities in F [Fp],
but we avoid re-writing them for modularity. . . . . . . . . . . . . . . . . . 142

6.6 Ideal functionality for MPC over the EC pairing operation with G1 and G2
as the input groups and GT as the target group. We assume that F [Pair]
also includes all Tier-1 and Tier-2 sub-functionalities in F [Fp] and F [G],
but we avoid re-writing them for modularity. . . . . . . . . . . . . . . . . . 146

6.7 (a), (b) and (c) depict latency (in logarithmic scale) of ECDSA PCI-Any-DC
vs BLS PCI-Any-DC in LAN, WAN and ICWAN setups respectively on
consumer hardware. (d), (e) and (f) depict the latency (in logarithmic scale)
in LAN, WAN and ICWAN setups respectively on powerful hardware. . . . 164

6.8 (a) and (b) Represents latency of different phases of the ECDSA PCI-Any-DC
and BLS PCI-Any-DC respectively with 100 inputs from each party. . . . . 165

6.9 (a) and (b) represents total communication and maximum memory used re-
spectively (in logarithmic scale) by ECDSA and BLS PCI-Any-DC . (c)
presents the latency of PCI-Any-DC with different output intersection sizes. 166

6.10 (a), (b) and (c) depict latency of ECDSA PCI-All vs BLS PCI-All with 100
certifiers and 1 to 100 claims as input from each party in (a) LAN (b) Conti-
nental WAN (c) Inter-continental WAN setups respectively using consumer
hardware. (d) and (e) presents the total data communicated and maximum
memory consumption of PCI-All respectively. . . . . . . . . . . . . . . . . 167

A.1 Ideal functionality F (n)
PCI for multi-party PCI . . . . . . . . . . . . . . . . . 195



List of Tables

3.1 Effect of communication tree on multisig collection latency . . . . . . . . . 66

6.1 Throughput (operations per second) for Local EC Operations using RELIC
and OpenSSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2 Throughput (operations per second) for Local EC Operations on Pairing-
friendly Curves using RELIC . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.3 Throughput (operations per second) for Operations Requiring Communi-
cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xxix





Nomenclature

Abbreviations

PCI Private Certifier Intersection

PCI-All Private Certifier Intersection Validate-All

PCI-Any Private Certifier Intersection Validate-Any

PSI Private Set Intersection

ABS American Bureau of Shipping

B/L Bill of Lading

B2B Business-to-Business

B2C Business-to-Consumer

BFT Byzantine Fault Tolerant

CA Certificate Authority

CMDAC Configuration Management and Data Acceptance Chaincode

CoSi Collective Signing

CSP Cloud Service Providers

DID Decentralized Identifiers

DLT Distributed Ledger Technology

EC Elliptic-curve

IIN Interoperation Identity Network

L/C Letter of Credit

MPC Multi-party Computation

xxxi



xxxii NOMENCLATURE

MSP Membership Service Provider

OIN Organization Identity Validator

PMV Participant Membership Validator

PoS Proof of Stake

PoW Proof of Work

PTAN Privacy-Preserving Trust Anchor Negotiation

SPV Simplified Payment Verification

SSI Self-sovreign Identity

STL Simplified TradeLens

SWT Simplified We.Trade

TA Trust Anchor

TFN Trade Finance Network

TLN Trade Logistics Network

VC Verifiable Credentials

VDR Verifiable Data Registry / DID Registry

Symbols

< m >Y Message m encrypted with key Y

A Adversary

σ Signature / certificate

C Certificate space

m Claim

M Claim space

O The point at infinity (the identity element) of an EC

G Generic group with prime order p

H (.) Cryptographic hash function

K̂ Infrastructure contribution proportion



NOMENCLATURE xxxiii

id Identity corresponding to a certifier

ID Set of identities corresponding to the certifiers

λ Security parameter

C Catalog of a cloud federation

F Federation

V VM configuration set

F Functionality

K Infrastructure contribution

Ni DLT network i

T Trust anchor

CR Consumer request

C Consortium member

O VM offering set

o VM offering

vm VM configuration

[.]G A secret shared value over G

[.] A secret shared value over Fp

S Simulator

τ Trusted third party

T Set of trust anchors

Fp Field with prime order p

Pi Party i





Chapter 1

Introduction

Recent advances in blockchain technology have liberated it from the boundary of cryp-

tocurrencies [2] and opened up a whole new domain of decentralized multi-stakeholder

applications [3]. On the one hand, robust smart contracts [4], and faster transaction process-

ing capabilities [5] in permissionless blockchains have fostered the development of publicly

accessible decentralized applications such as NFT marketplaces [6], lending platforms [7],

multi-player games [8], etc. While on the other hand, the development of permissioned

blockchain platforms [9] has made distributed ledger technology (DLT) a plug-and-play

solution for a bulk of application scenarios where multiple authoritative entities (which

do not necessarily trust each other) need to collaborate toward some common goal. For

example, in the case of trade and logistics, different businesses form a consortium for op-

erating a business-to-business (B2B) supply chain, where transparency, accountability, and

provenance tracking of every transaction is vital. However, the participating businesses do

not wish to blindly trust any central authority to maintain this system for obvious uncer-

tainty regarding its trustworthiness and reliability. In such scenarios, permissioned DLT

platforms have emerged as the perfect candidate for providing the necessary infrastruc-

ture that eliminates the dependency on a central authority with a transparent, tamper-proof

system governed collectively by its independent stakeholders. As a result, permissioned

DLTs have seen applications in a wide range of use cases such as supply chains [10, 11],

energy trading [12], healthcare [13, 14] etc. However, these instances of early adoption of

blockchain technology have largely been through the deployment of DLT networks which

1



2 Chapter 1 Introduction

are geared towards narrow short-term objectives, and they are unable to scale to a broader

multi-blockchain setup with cross-chain communication [15].

The use cases of blockchain technology are not necessarily always limited to a sin-

gle group of stakeholders. Instead, communication in the form of data and asset transfer

between different networks is also required. Consider an example of international trade

finance and trade logistics. DLT based Trade finance platforms such as We.Trade1 is a

collection of financial institutions such as banks, global credit bureau, and businesses that

require access to financial services for international trade. These organizations do benefit

from the transparency and auditability features of using a DLT platform. However, sit-

uations often arise when such a finance network requires information from the logistics

providers in order to enforce a contract, such as a letter of credit. A letter of credit ensures

payment to a seller of some goods, provided that the seller has handed the said goods to

the logistics provider and produced a bill of lading [16] as a proof. This information about

goods being dispatched is usually a part of the logistics network, which is often instantiated

as a separate blockchain network (e.g. Tradelens 2). Therefore, cross-blockchain transfer of

data is a required to achieve practical goals which are otherwise not possible in the current

fragmented landscape of DLT platforms [15]. The necessity of such DLT interoperability

is however not limited to only enterprise scenarios of isolated business networks.

Blockchain applications have largely been of two specific categories, - (i) applications

which are meant to be publicly accessible by their users without the requirement of any

joining procedure, and (ii) private applications handling business logic that are executed by

a group of participants who know each other and explicitly approve any new participants

who wish to join. Accordingly, permissionless and permissioned blockchain technologies

respectively are applied for these two different types of use cases. In the rest of this thesis,

we use the terms permissionless blockchains and public blockchains interchangeably. Sim-

ilarly, we also denote permissioned blockchains as private blockchains. Notably, in many

real-world scenarios, these two categories cannot act independently, and in such cases,

both permissioned and permissionless blockchains must work together in harmony. This

fact can be realized by simply extending the aforementioned trade-logistics use case exam-

1https://www.ibm.com/case-studies/wetrade-blockchain-fintech-trade-

finance/
2https://www.tradelens.com/ (Discontinued at the beginning of the year 2023)

https://www.ibm.com/case-studies/wetrade-blockchain-fintech-trade-finance/
https://www.ibm.com/case-studies/wetrade-blockchain-fintech-trade-finance/
https://www.tradelens.com/


1.1 Motivation 3

ple. Any supply chain is typically a multifaceted network with one or more closed business

networks collaborating through B2B (business-to-business) transactions, facilitating differ-

ent steps starting from the procurement of raw materials to manufacturing. Finally, an open

consumer network having B2C (business-to-consumer) operations [17] allows the distribu-

tion and delivery of goods and services to the end-consumers. While a permissioned DLT

platform is suitable for B2B interactions, it cannot accommodate end-consumers because

of its closed design. As a result, there is clearly a requirement for the development of an in-

terface between such closed networks and open permissionless networks in order to realize

any application that involves B2B as well as B2C interactions.

In order to realize end-to-end DLT based systems that can accommodate closed groups

of participants, as well as provide an open interface that is publicly accessible, we need to

develop frameworks and protocols for cross-blockchain interoperability. In this direction,

we next explore the existing solutions and outline the gaps and challenges that motivated

us to conduct our research on blockchain interoperability and identity management.

1.1 Motivation

Blockchain interoperability has been an area of research interest in recent times [18]. The

major share of efforts have been towards developing protocols for cross-chain cryptocur-

rency exchange [19–21]. As a result, public-public blockchain interoperability frameworks

have seen a fair amount of adoption in the context of cryptocurrency trading [20], cross-

chain smart contract execution [22], payment channel networks [23], etc. Some private-

private blockchain interoperability solutions have also been proposed [15] to facilitate

inter-consortium B2B collaboration for use cases such as federated model training [24].

Notably, there is still no means of constructing an end-to-end decentralized workflow in-

volving multiple B2B links and ending in one or more B2C networks since such a system

will require an interface between the public end-consumers and the private consortium of

businesses. Concretely, a public-private blockchain interoperability mechanism needs to be

designed that will act as a bridge from an open and public network to a closed permissioned

network. Such a public-private interoperability protocol is an essential requirement in any

setup involving a closed consortium of entities such as businesses / organizations, which



4 Chapter 1 Introduction

wants to communicate to entities such as their end-users that are outside the purview of the

permissioned network.

Having a B2C bridge through a public-private blockchain interoperability protocol is

the first step towards realizing DLT networks of consortiums which need to dispense goods

/ services to the masses. But at the same time, one consortium might need to collaborate

with other consortiums to achieve their business goals. The aforementioned example of

international trade finance and logistics is one notable use case scenario. In this regard,

there are a few private-private blockchain interoperability frameworks that have been de-

veloped [18]. One of the most notable works among them is by Abebe et al. [15], which

proposed a mechanism for cross-chain verifiable data transfer across permissioned DLTs.

The crust of their contribution lies in the general framework of verifying the validity of data

originating in one permissioned DLT from another DLT. In their proposed architecture, data

originating from one DLT is attached with a proof and sent to the other DLT network. The

proof must reflect the consensus view of the source DLT, and the same should be verifiable

by the destination DLT. This mechanism is agnostic of the underlying DLT platforms of the

two permissioned networks, and their instantiations used proofs through digital signature-

based attestations for Hyperledger Fabric [9] based DLTs. Any private-private blockchain

interoperability protocol in some way has to achieve such consensus proof generation and

verification mechanism. However, one key requirement to enable such cross-chain proof

verification is the availability of identity information (e.g. public keys) of the participants

of the counter-party networks for validating attestations (e.g. digital signatures). The ex-

isting works take it as an assumption that the identity information of the other network’s

participants is somehow pre-configured before the start of the interoperation protocol [15].

Notably, configuring member identities across two permissioned DLTs without the help of

any central trusted mediator is a challenging problem and is essential to enable private-

private blockchain interoperability.

Recently introduced W3C Recommendations namely, Decentralized Identifiers (DID) [25],

and Verifiable Credentials (VC) [1] provide a foundation for distributed identity manage-

ment. Using DIDs and VCs as basic building blocks, protocols for cross-blockchain ex-

change of identities can be constructed. Concretely, any trusted credential exchange is

dependent on the availability of a common trust basis. This common trust basis or trust an-

chor attests to the claim(s) of a credential prover, and the same is trusted by the credential



1.2 Objectives of the Thesis 5

verifier. As a result, even before any kind of credential (e.g. identity) can be exchanged

(e.g. through the VC specification), the two parties must somehow negotiate a common

trust anchor. Notably, a naive approach to determine a common trust anchor by revealing

the entire list of such trust anchors of a party can have major privacy implications. There

are strong reasons why revealing one’s complete list of trust anchors might not be in one’s

interest. Often these trust anchors are well known and influential organizations, and hence

are accepted by different parties. These well known trust anchors could include govern-

ment agencies, political organizations, NGOs, etc., and such affiliations might be sensitive

information that could potentially be misused. As a result, there are strong reasons for

designing protocols for privacy-preserving negotiation of such trust anchors for facilitating

cross-blockchain identity configuration. Further deeper in this direction, even outside the

use-case of blockchains, in general any application involving credential exchange through

DID and VC specification would benefit from such a privacy-preserving common trust an-

chor determination mechanism. Such protocols must be compliant with the standard digital

signature schemes used to issue VCs such as ECDSA [26], and also be efficient enough to

be of practical use.

Based on the aforementioned gaps in the existing blockchain technology landscape,

specifically around public-private blockchain interoperability and decentralized identity ex-

change, we next define a set of objectives that we aim to address in this thesis.

1.2 Objectives of the Thesis

From a bird’s-eye view, this thesis intends to design and develop architectures and proto-

cols for enabling an end-to-end decentralized ecosystem of connected permissioned and

permissionless distributed ledgers that are capable of interoperating with each other. As

outlined in the previous section, there have been prior works that have contributed toward

this goal, but nonetheless, there are gaps that need to be addressed. In this section, we detail

the specific objectives of the thesis.



6 Chapter 1 Introduction

1.2.1 Enabling Public-Private Blockchain Interoperability

Emerging blockchain networks such as IBM Food Trust [27], TradeLens [10], Marcopolo

[28], etc., use private DLT platforms like Hyperledger Fabric, Corda [29] etc., to form

closed consortiums of businesses. However, a key limitation of such existing private

blockchain platforms is the restriction of their applicability within only closed consortiums

where data and assets are not required to be communicated outside the network boundary.

Thus, Fabric, Corda, or other existing private blockchains do not support any interface

or protocols for interacting with the open network outside, which is crucial for building

consortiums of service providers acting together to deliver services to the consumer net-

work. In this objective, we aim to develop a decentralized interface between the private

blockchain networks and the open network of end-users (consumers). While doing so, we

address the following sub-objectives. (i) A protocol designed for transferring data, such

as end-user requests from the open network, into the private blockchain in a secure and

verifiable manner. (ii) Collaboration framework through which consortium participants

reach consensus on the end-user data and schedule end-user requests for collective service

delivery. (iii) Development of a mechanism through which a permissioned network can

communicate its data and assets to its end-users, such that the end-users can validate the

authenticity of that data and verify its source. (iv) The final sub-objective is to implement

the public-private blockchain interoperability layer achieving these three functionalities,

and validate its usability.

1.2.2 Identity Exchange across Permissioned Blockchains for Enabling
Interoperation

Inter-consortium collaboration depends on private-private blockchain interoperability. Ex-

isting private-private blockchain interoperability frameworks are based on exporting the

consensus views of a source network’s participants and making them verifiable through at-

testations. But proof-by-attestation relies on a network’s ability to gain visibility into its

counterparty network to let its participants know the identities and certificate chains of the

latter’s participants. These identities are essential for validating the signatures in proofs.

Our objective is to design a pluggable decentralized identity exchange protocol through



1.2 Objectives of the Thesis 7

which two interoperating networks can set up their counterparty network’s identities. To-

wards this direction, we address the following sub-objectives. (i) Separation of the inter-

operation protocol dealing with data and asset transfers from the identity exchange mech-

anism into two different planes. (ii) Designing DLT agnostic identities in the form of SSI

for the identity plane and exposing them outside the permissioned network boundary. Ad-

ditionally, mapping the SSI to the DLT specific identities of the data plane. (iii) Using trust

anchors for trusted exchange of identity information across blockchain networks. (iv) En-

suring consensus of foreign network identity information within a DLT. (v) Development of

a DLT agnostic implementation of this identity exchange protocol for a real-world use case.

1.2.3 Cross-chain Negotiation of Common Trust Anchors

Trustworthy exchange of credentials, such as identity information, between two parties

depends on the availability of a common trust basis. In the context of identity exchange

between two permissioned blockchain networks, the credentials used by organizations to

prove their real-world identities to foreign networks may be issued by several different trust

anchors. But such a credential is useful and applicable only if the trust anchor that issued

it is also trusted by organizations in a counterparty network. But revealing one entity’s

entire trust anchor list poses a serious threat to its privacy, as discussed in the last sec-

tion. As a result, one of our objectives in this thesis is cross-chain negotiation of common

trust anchors. This involves the following sub-objectives. (i) Defining the trust negotiation

problem and the required security guarantees through a formal framework. (ii) Exploring

the possible solution approaches that may or may not involve the trust anchors themselves.

(iii) Designing a protocol for privacy-preserving trust anchor negotiation that is compati-

ble with Verifiable Credentials specification. (iv) Evaluating the performance and security

guarantees of the implementations of these solutions.

1.2.4 Determining Common Trusted Credential Issuers

A key goal of Web 3.0 is to remove dependencies on centralized service providers, includ-

ing identity providers such as Certificate Authorities (CAs) [30]. Emerging decentralized



8 Chapter 1 Introduction

identity systems are being developed on the foundation laid by DID and VC specifications.

But any VC flow involving a credential prover and a credential verifier is dependent on

the availability of a common certifier that acts as a trust anchor between them. Therefore,

extending from the last objective, we aim to generalize privacy-preserving negotiation of

certifiers between a credential holder and a credential validator for any VC presentation

scenario. Through this protocol, two parties will be able to determine their common valid

trust anchors without revealing any information about the trust anchors which are not com-

mon between them. The following sub-objectives must be met towards achieving this goal.

(i) Introducing a formal security definition for private certifier intersection. (ii) Design-

ing an efficient secure multi-party computation framework capable of validating digital

signatures. (iii) Instantiating a private certifier intersection protocol for practical signature

schemes such as ECDSA. (iv) Handling use cases involving multiple claims. Moreover, any

such system has to be efficient enough for practical usage while meeting the security goals.

1.3 Contributions of the Thesis

Following the aforementioned objectives, we next summarize the contributions made in

this thesis.

1.3.1 Public-Private Blockchain Interoperability for Service Decen-
tralization

We designed and developed a decentralized collaborative architecture called CollabFed,

which provides a novel decentralized interface between permissioned blockchain networks

and permissionless blockchain networks. This enables closed consortiums of businesses

to interact with their end-users, which form the B2C side of a supply chain. The primary

contributions of CollabFed are summarized as follows.



1.3 Contributions of the Thesis 9

Overview

Through the unique combination of the public DLT and private DLT networks by enabling

interoperability between them, CollabFed provides the mechanism for trusted and secure

data transfer (a) from the end-users to the business consortiums and (b) from the businesses

to the end-users. We define the threat model for public-private blockchain interoperability

while taking into consideration the byzantine behavior of end-users in the public network,

as well as consortium participants in the private network. Furthermore, CollabFed handles

sybil attacks of end-users and risks of leakage of sensitive consortium information.

The cornerstone of CollabFed is its “consensus on consensus” mechanism for propa-

gating the data, such as end-user requests committed on the public blockchain reliably to

the private blockchain. This protocol ensures that the consortium network has consensus

on (i) end-user requests and data, as well as (ii) the order in which they are received by the

consortium. While doing so CollabFed ensures both safety and liveness of the interface.

Once an end-user request is processed and the consortium generates a response, that

response must be securely transferred back to the requesting user in the public network.

We employ the concept of Collective Signing (CoSi) [31] where a set of consortium mem-

bers collectively sign a response to make the consensus view verifiable outside the private

network boundary. Furthermore, CollabFed encrypts each response with the public key of

the end-user for ensuring privacy.

We implemented CollabFed for the use case of cloud federations, where a consortium

of cloud service providers provides cloud infrastructure in the form of virtual machines

to its end-users. The implementation used a combination of Ethereum [4] for the public

network , and Fabric [9] and Burrow [32] for the private network.

Summary of Results

We evaluated CollabFed for a decentralized cloud federation use case using three cloud

providers. We also performed scalability tests for up to 32 emulated consortium partici-

pants. Following are some of the key observations from the evaluation.



10 Chapter 1 Introduction

1. The characterization of the public-facing interface using different Ethereum test net-

works, namely, proof-of-work based Ropsten and proof-of-authority based Rinkeby

network, reveal that the Rinkeby network has significantly less transaction commit-

ment latency.

2. The transaction processing latency of the private blockchain is however significantly

less compared to that of the public blockchain. Both Fabric and Burrow based im-

plementations are capable of processing 64 concurrent end-user requests in around 5

seconds in the “consensus on consensus” protocol.

3. Scalability experiments using 32 consortium participants in a Mininet [33] emulation

shows that the CoSi inspired signature collection takes around 3.5 seconds even for

a high inter-participant latency of 400ms.

4. Overall, CollabFed has acceptable latency overhead in use cases such as cloud fed-

erations, where the end-user requests are relatively infrequent and inherently take a

long time to serve compared to other applications such as e-commerce. This is often

an acceptable trade-off for the decentralization guarantees that CollabFed offers.

1.3.2 Decentralized Cross-Network Identity Interoperation

We proposed architecture and protocols for the exchange of identities across permissioned

blockchain networks based on the following design principles: (a) The architecture must

be DLT platform agnostic and should be applicable to any permissioned blockchain tech-

nology. (b) The networks and their participants should be free to choose identity registries

and providers. (c) Networks must retain their autonomy in exposing or not exposing their

identities. (d) The solution implementation should not require changes to the existing DLT

platforms.

Overview

Our proposed decentralized identity management architecture separates the identity inter-

operation functionality into a separate plane from the data interoperation plane. However,



1.3 Contributions of the Thesis 11

since permissioned blockchain network identities (e.g. root CA certificates in Fabric) have

no manifestation outside the network boundary, the first step is to design network agnos-

tic credentials. For this purpose, our architecture uses Decentralized Identifiers (DID) and

Verifiable Credentials (VC) to provide SSI to the participants that can be exposed outside

the private DLT.

For facilitating verifiable exchange of identity and credentials, we introduced “Inter-

operation Identity Network” (IIN), which consists of a DID registry [25], and a pool of

credential issuers (trust anchors). The DID registry is built on a public ledger to avoid cen-

tralization. The IIN trust anchors issue credentials attesting to the identity of consortium

participants, as well as the validity of their membership in a particular DLT network. A

pool of such IINs together forms the distributed identity infrastructure that provides the

trust basis for cross-network verifiable identity exchange.

Based on this identity plane architecture, we designed a protocol for cross-network

identity interoperation which involves two broad phases: (a) network independent SSI

configuration, and (b) identity exchange and validation. In the first phase, each private

blockchain network participant creates its SSI in the form of a DID, and registers the same

in some IIN’s DID registry of its choice. Then it gets its identity and consortium mem-

bership claims attested by some trust anchor which issues necessary verifiable credentials.

Once network participants have their respective SSI and VCs configured, the protocol can

proceed to the identity exchange phase. Through the identity exchange phase of the proto-

col, a permissioned network configures the identity, membership, as well as DLT-specific

data plane credentials (e.g. Fabric certificates) of the participants of a counterparty net-

work with which it wishes to interoperate. This is achieved by fetching the DID of each

participant, validating their identity and membership VCs, and fetching their DLT-specific

credentials, which are self-signed using their DID. Finally, to ensure consensus of the net-

work on a counterparty network’s identity, we design a flow through which the participants’

endorsements are collected on it. The identity configuration of a foreign network is accept-

able only if it has sufficient endorsements.

We implemented the identity plane architecture using Hyperledger Indy [34] for the

DID registry, and Hyperledger Aries [35] for VCs. We implemented the identity exchange

protocols for two Hyperledger Fabric networks, enabling them to interoperate in the data



12 Chapter 1 Introduction

plane without manual identity pre-configuration.

Summary of Results

We demonstrated the proof-of-concept implementation of our protocol by extending the

two-network use case in Abebe et al. [15]. We started with scaled-down versions of the

trade logistics network, TradeLens, and the trade finance network, We.Trade. Our proto-

col replaces the naive implementation in Abebe et al., where organizational identities and

root and intermediate certificates were fetched out-of-band manually. The key results and

analysis are as follows.

1. Through our protocol, the simplified versions of TradeLens and We.Trade. networks

could successfully verify and configure the counterparty network’s identities without

manual intervention. Furthermore, the data plane operations are kept unaltered and

work seamlessly.

2. Our proof-of-concept implementation required minimal change, namely, only one

additional smart contract in the existing deployed blockchain networks. This demon-

strates the extensibility of our solution for any permissioned blockchain platform.

3. We analyzed the security guarantees of our architecture and protocol in terms of

confidentiality, integrity, and availability.

1.3.3 Cross-chain Negotiation of Common Trust Anchors

The identity exchange protocol introduced above provides a mechanism for permissioned

DLTs to validate and configure foreign network identities. However, the credentials used

by organizations to prove their real-world identities and network memberships may be is-

sued by several different trust anchors (TAs) associated with different registries. But such

a credential is applicable only if the TA that issued it is also trusted by organizations in a

counterparty network. Determining such common TAs without revealing the other TAs is



1.3 Contributions of the Thesis 13

important to protect the privacy of the parties. We study this as “Privacy-Preserving Trust

Anchor Negotiation” (PTAN) problem and propose two genres of solutions for the same.

Overview

We introduce the definition of the PTAN problem in the universal composability (UC)

framework, and provide solutions for it while considering malicious adversary model. No-

tably, trust anchors in practice are often well-known entities such as government organiza-

tions, large businesses, etc. Hence, in our threat model, we consider that the adversary has

access to the universal set of all possible TAs. Consequently, we point out that black box

usage of existing cryptographic constructions such as private set intersection (PSI) are not

enough to achieve PTAN.

We first provide a simple solution for common TA negotiation with the help of the trust

anchors’ active participation. At a high level, in this protocol, the parties contact their re-

spective TAs initiating a negotiation. Only when some TA receives negotiation requests

simultaneously from both the parties, it responds to them positively, and thus reveals itself

as a common anchor. This naive approach however contradicts one key goal of verifiable

credentials which promises that possessing a VC excuses a TA from being involved in the

VC presentation process.

Avoiding the involvement of the TAs themselves requires the parties to compute their

common TAs without the help of any other mediator. We present a secure multi-party com-

putation (MPC) based protocol that achieves this for credentials with ElGamal signatures.

Through an optimization where the r component of an ElGamal signature (r, s) is made

public, our protocol can efficiently verify the VC signatures within the MPC, while reveal-

ing neither the signature nor the signer. After validating the VCs, the protocol computes

the intersection of the valid input trust anchors and outputs one or more common TAs as

per the requirement.



14 Chapter 1 Introduction

Summary of Results

We implemented our proposed MPC based PTAN protocol using the MP-SPDZ [36] frame-

work and evaluated its performance and data communication overheads. The noteworthy

results are summarized as follows.

1. With the varying size of input sets from both parties, our proposed MPC based PTAN

protocol shows a linear increase in the execution time. Using 64-bit primes for the

MPC protocol, even for large input sizes of 120 from each party, it takes less than 25

seconds.

2. The complexity of the protocol is however dependent on the size of the smaller input

set size. This is made evident by keeping one party’s input set size constant at 20, and

varying the other from 20 to 120. In this scenario, the execution time of MPC based

PTAN remains relatively unchanged at less than 20 seconds (using 128 bit primes).

3. Just like execution latency, the protocol shows similar trends in the data communi-

cation overhead. There is a linear increase in the volume of data communicated with

the increase in the number of input TAs from each party. This data communication

overhead is also proportional to the size of the smaller input set.

4. In addition to the performance and overhead analysis of the PTAN protocol, we also

conduct a detailed security analysis and formally prove that it is secure against mali-

cious adversaries.

1.3.4 Private Certifier Intersection

Evolving from the aforementioned problem of common trust anchor negotiation across per-

missioned blockchain networks, we try to generalize the problem of finding the common

certifiers applicable in any VC presentation use case. We try to answer the question “Can

parties owning certificates efficiently identify a common set of certifiers without leaking

anything else?”. We define this problem of finding common certifiers without revealing

any information about the other certifiers as “Private Certifier Intersection” (PCI).



1.3 Contributions of the Thesis 15

Overview

Although seemingly similar to private set intersection (PSI), PCI is fundamentally different

since it involves validating the certifiers by verifying the credentials issued by them before

determining the common certifiers. It turns out that in the setting of semi-honest corrup-

tions (i.e., when the participating parties behave honestly as prescribed in the protocol), one

can easily achieve a secure PCI protocol by using any secure PSI protocol in a black-box

way. However, this does not hold for malicious corruption, and we develop a PCI protocol

for this type of adversary.

We formalize the security guarantees expected of a (multi-party) PCI protocol using the

simplified universal composability (SUC) framework, and define two variants of PCI: (a)

PCI-Any-DC where a certifier is valid if the party has a valid certificate from it attesting to

any one of its public claims, and (b) PCI-All where a certifier is valid if the party has a valid

certificate from it attesting to all its public claims.

The centerpiece of our contribution is a novel secret-sharing based MPC framework

that is tuned for elliptic curve pairings. We build upon the SPDZ secret-sharing based

MPC protocol [37] to achieve the first secret-sharing based MPC framework that seam-

lessly supports elliptic curve pairing operations as fundamental gate-level building-blocks

with malicious security against a dishonest majority of adversarial parties.

We then use this framework to build two efficient and provably secure PCI protocols,

one for PCI-Any-DC that uses ECDSA signatures for VCs, and the other for PCI-All us-

ing BLS signatures. We make several optimizations to both ECDSA PCI-Any-DC and

BLS PCI-All protocols to make them practically efficient. Through BLS-based signature-

aggregation techniques, the efficiency of PCI-All is brought at par with PCI-Any-DC.

Summary of Results

We extended MP-SPDZ [36] to implement our proposed secret-sharing framework sup-

porting elliptic curve operations, including bilinear pairings. Using this as a foundation, we

implemented both ECDSA PCI-Any-DC and BLS PCI-All protocols. We present a formal



16 Chapter 1 Introduction

security analysis of the protocols. After a detailed analysis of the performance of individual

components of our MPC framework, we conduct an end-to-end performance evaluation of

the protocols in realistic setups by placing parties in three geographic regions across two

continents. The key observations from this evaluation are as follows:

1. In a WAN setup with inter-party RTT latency of ∼ 62ms, both ECDSA and BLS

implementations of PCI-Any-DC take less than 150 seconds for 100 inputs from each

party. Notably, we use consumer hardware with only 8 core CPU and 8 GB RAM

for these experiments. Using more powerful hardware, up to ∼ 71% reduction in

end-to-end execution time is observed.

2. Both memory and data communication overheads of PCI-Any-DC increase with the

increasing size of the input sets. For 100 inputs from each party, both ECDSA and

BLS PCI-Any-DC require around 1.6 GB of data to be communicated. The memory

requirement of the BLS variant is more compared to that of the ECDSA variant of

PCI-Any-DC.

3. The BLS PCI-All protocol is more efficient than an ECDSA PCI-All protocol that

iteratively validates all the claims for a certifier. An increase in end-to-end latency of

ECDSA PCI-All is observed with an increasing number of claims and a fixed number

of certifiers. On the other hand, the latency of BLS PCI-All stays almost unchanged

with the increasing number of claims.

4. ECDSA PCI-All requires more data to be communicated for more number of claims

from the parties, whereas for a fixed number of certifiers, BLS PCI-All has identical

data communication overhead for any number of claims. The memory consumption

of ECDSA PCI-All is considerably less compared to BLS PCI-All, still, it shows an

increasing trend with increasing number of claims.



1.4 Organization of the Thesis 17

1.4 Organization of the Thesis

In this section, we briefly describe the organization of the thesis.

• Chapter 2 provides a background on the recent advancements around blockchains,

smart contracts, and decentralized identity management standards. This is followed

by a detailed literature survey of blockchain interoperability encompassing public-

public, private-private, as well as public-private interoperability. Finally we examine

the existing tools and techniques which are related to negotiation of common trust

anchors across blockchain networks.

• Chapter 3 presents CollabFed, a public-private blockchain interoperability frame-

work for service providing permissioned consortium networks.

• Chapter 4 presents a decentralized architecture and protocol for cross-network iden-

tity configuration across permissioned DLTs, which is an essential requirement for

enabling private-private blockchain interoperability.

• Chapter 5 deals with the design and development of protocols for privacy-preserving

negotiation of common trust anchors across blockchain networks.

• Chapter 6 introduces the problem of private certifier intersection (PCI), and provides

solutions for two variants of PCI. The solutions are based on a novel MPC framework

that supports elliptic curve pairings.

• Chapter 7 concludes the thesis by summarizing the primary contributions and sug-

gesting potential future directions.





Chapter 2

Background and Related Work

In this chapter, we first briefly introduce blockchains and smart contracts, followed by

some other building blocks related to decentralized identity management. Looking ahead,

these concepts will be extensively used in the later chapters for building interoperability

architectures across different types of blockchains. Following this, we discuss the existing

literature on blockchain interoperability and trust anchor negotiation in detail. While doing

so, we outline the key challenges of interoperability and the gaps in the existing solutions

for decentralized trust negotiation.

2.1 Blockchain

Before delving into the aspects of blockchain interoperability which is the crust of this

thesis, we first introduce the concept of blockchain which is also generally termed as dis-

tributed ledger technology (DLT) [3, 38].

The blockchain technology has been made popular by cryptocurrencies after the rise of

Bitcoin [2]. It may be described as “the decentralized transparent ledger with the transac-

tion records – the database that is shared by all network nodes, updated by miners, moni-

tored by everyone, and owned and controlled by no one.” [39]. At its core, a blockchain is a

replicated append only ledger whose transactions are governed by byzantine fault tolerant

19



20 Chapter 2 Related Work

consensus protocols [40]. With the introduction of smart contracts, blockchains were no

longer limited to applications in cryptocurrencies, but open to any decentralized computa-

tion [3]. This made them comparable to the classical state-machine replication [41], with

applications in a wide range of domains ranging from supply chains [11], IoT [42–44], data-

sharing systems [24, 45–47], healthcare [13, 14], transportation [48], energy trading [12],

etc. As a rule of thumb, we can say that the blockchain technology is applicable in any

scenario where there are multiple stakeholders who do not completely trust each other, yet

they together want to run a shared system without relying on any central trusted author-

ity. In fact, the adoption of blockchain has thus far been limited to groups of stakeholders

working towards some common goal, resulting in the instantiation of specialized isolated

DLT systems with no means of communicating with one another [15]; - a problem which

we try to address in this thesis.

Based on the consensus architecture and the membership policy deciding who can

participate, the blockchain networks can be categorized into (a) permissioned (private)

blockchains (b) permissionless (public) blockchains. The general characteristics and spe-

cific instantiations of each these categories is discussed in the following subsections.

2.1.1 Permissionless blockchain

In a permissionless or public blockchain network, the participation is open to everyone.

Anyone can join the network without any identity verification process. As a result, a par-

ticipant is not aware of the identities of every other participant in the network. The most

popular consensus protocol for this kind of DLT is “proof of work” (PoW) introduced for

Bitcoin [2]. However, due to the poor transaction throughput and high resource consump-

tion by PoW [49], many alternate consensus protocols and blockchain platforms have since

been proposed, such as Proof of Stake [50], Bitcoin-ng [51], Byzcoin [52], Algorand [5]

etc. These have slightly different system models and safety guarantees, but they have one

property in common i.e. open-membership. As a by-product of the open-membership and

the consensus protocols, permissionless networks gain a very important property – public

verifiability, allowing anyone to verify the correctness of the state of the system [3, 53].

Proof of Work (PoW) consensus based blockchains like Bitcoin, Litecoin, Ethereum



2.1 Blockchain 21

(till September 15, 2022) etc., account for the majority of market capitalization in digital

cryptocurrencies 1.

If the block mining process depended on the number of votes to determine the next

block, then having “one-account-one-vote” would be a broken system since anyone could

allocate as many accounts as one wanted in a permissionless blockchain. This problem is

known as the Sybil attack [54], where a single participant can have multiple identities.

To counter this, in essence, PoW tries to achieve “one-CPU-one-vote”. The PoW con-

sensus protocol requires miners to expend computing resources in the form of CPU time to

mine new blocks [2].

Concretely, the blocks in the blockchain have a nonce field which can contain arbitrary

data. The miners are required to set the nonce to some value such that the cryptographic

hash of the block (such as SHA-256) have a certain number of leading zeros. The CPU

time, and hence energy expended to mine a block grows exponentially with the number

of leading zeros required to mine a block. This parameter is known as the proof-of-work

difficulty, and it is determined by a moving average targeting an average block mining rate.

Once a block is mined, it cannot be changed without redoing the work. Moreover, as more

blocks are chained after it, the work to change a block includes ‘re-mining’ all the blocks

after it. An important part of the PoW protocol is that honest miners would always work on

the longest chain. Therefore, any attacker wanting to change a block must first change the

target block, then mine new blocks after it till this new chain overtakes the longest existing

chain.

Proof of Work’s “one-CPU-one-vote” strategy is certainly a practical approach to coun-

tering Sybil attack. However, it has certain economic implications. The miners who process

the transactions in a block to keep the blockchain operating need to expend CPU resources,

and hence energy - which has monetary value. Therefore, there has to be some economic

incentive for the miners to keep the blockchain operational. In addition, there must be suf-

ficient economic deterrent for any attacker that will potentially prevent it from deploying

enough CPU resources to alter the chain. Miners are incentivized in two ways - (i) mining

rewards, and (ii) transaction fees. Mining reward or block reward is the constant amount of

1https://coinmarketcap.com/

https://coinmarketcap.com/


22 Chapter 2 Related Work

coins (cryptocurrency) given to a miner for successfully mining one block. This provides a

steady flow of new coins in the system. The process is thus analogous to gold miners spend-

ing resources to add new gold into circulation. The mining reward is revised and reduced

every constant number of blocks to emulate the scarcity of supply of coins. Eventually,

the mining reward runs out and the miners are left only with the second type of reward,

that is transaction fees. The miners are free to choose any transactions to be included in

a block, and thus they choose the transactions that offer the most transaction fees. Once

mined, the transaction fees of a transaction goes to the miner. Miners gain a monetary profit

when the monetary value of the cryptocurrency coins earned through mining exceeds the

cost of energy expended in the mining process. This in turn acts as a deterrent to attackers

because if an attacker somehow manages to get more than 50% of the CPU resources in

the network, then it can make more economic gains by honest mining than by attacking a

particular block.

The safety property of PoW holds with the assumption that no entity (single or col-

luded) has more than 50% of the processing power in the network [49]. However, there

have been other attacks such as “selfish mining” [55], “eclipse attacks” [56], etc. which

can further compromise the safety of the network. In terms of liveness, PoW mines all

the transactions eventually as long as the network is partially synchronous and under the

control of honest miners (safety condition). The transaction fees also govern how fast a

transaction will be committed [57]. The rate of producing new blocks has a trade-off with

the safety of the blockchain, with stale block rate of 0.41% in Bitcoin compared to 6.8% in

Ethereum due to the faster confirmation time in the later [49]. As a result, the transaction

rates of these blockchains are slower ( < 100 transactions per second ) compared to other

alternatives [52].

Proof of Stake (PoS) consensus protocols have been developed to reduce the resource

consumption required for the consensus process in case of PoW, and they also offer bet-

ter transaction confirmation latency [5, 50]. In essence, the “one-CPU-one-vote” idea of

Proof of Work is replaced with “one-coin-one-vote” in Proof of Stake, where a partici-

pant’s investments in the blockchain (cryptocurrency) determine its probability of success-

fully mining a block. More precisely, in PoS, a leader is selected among the stakeholders

of the blockchain, and that leader is responsible for proposing and validating (mining) new

blocks. The probability of a participant becoming a leader is proportional to its stake, that



2.1 Blockchain 23

is the amount of cryptocurrency coins of the concerned blockchain. In some blockchain

networks, a minimum stake is required to be eligible to participate as a leader. For exam-

ple, in Ethereum PoS, a user must deposit 32 ETH into a deposit smart contract in order to

participate as a leader. The leader for a time slot is usually selected through a random func-

tion such as the Verifiable Random Functions (VRF) in Algorand [5] while giving weights

proportional to the stake of the participants. Once selected, a leader must participate in the

block proposal and block validation process.

Just like in Proof of Work, in Proof of Stake protocols, there are economic incentives

that drive the participation of miners and deter malicious behaviour. Firstly, the stake of

the miners acts as collateral that can be destroyed if the leader (validator) tries to attack the

system or refuses to participate in the mining process, implying denial of service. The two

most common attacks which a leader can try are (i) proposing different blocks to different

subsets of the blockchain network in an attempt to create a fork, and (ii) attesting two or

more different proposed blocks, thus announcing contradictory attestations. Such attacks

can potentially create forks with two competing chains, in which case the “richest chain”

wins [3]. Here the “richest chain” indicates the chain that is attested by the highest amount

of stake. Once any such malicious behaviour of a leader or validator is detected, a part

of the stake of that participant is destroyed as a penalty - thus enforcing honest behaviour.

Similar penalty is also imposed for lazy participants who do not participate in validation

process in a timely manner, thus deterring denial of service attacks. Similar to PoW, the

honest miners also receive transaction fees and mining rewards for their service in propos-

ing and validating blocks. Although this incentive keeps the blockchain operational, there

are concerns about the “rich-get-richer” with Proof of Stake systems [3].

The condition under which PoS blockchains maintain the safety property is that more

than two thirds (> 2
3
) of the stake (for example cryptocurrency) is owned by the honest

users. For ensuring the liveness property, these blockchains depend on certain practical

assumptions like network reachability, strong network synchrony [5], elected committee

members participate in the consensus process, and stakeholders do not remain offline for

a long period of time [50]. The transaction throughput and latency of PoS blockchains are

much improved when compared to the PoW ones, with Algorand claiming 125× through-

put of Bitcoin [5].



24 Chapter 2 Related Work

BFT Based protocols have also recently gained much attention with Bitcoin-NG [51]

and Byzcoin [52]. These blockchains use traditional BFT protocols such as PBFT [58] in

order to achieve consensus in a close committee which is elected and changed over time

through PoW. Thus, PoW is used only for electing committees, while the transaction blocks

can be generated quickly by the committees using BFT protocols. The safety assumption

of such consensus protocols is that the byzantine nodes should have less than 1
4

of the sys-

tem’s total hash power at any time. For liveness, they rely on the weak synchrony property

of the network [52]. Because of the decoupling of committee/leader election using PoW

and mining blocks using BFT protocols, these protocols achieve a very high throughput

(around 1000 transactions per second in Byzcoin).

Apart from PoW, PoS and BFT based protocols there are other consensus protocols

such as Proof-of-Useful-Work [59], Proof-of-Elapsed-Time [60] etc. are also discussed in

the literature.

Irrespective of the performance gains through efficient consensus protocols [5], permis-

sionless DLTs still have the issue of open membership allowing anyone to participate, and

public access allowing anyone to read the ledger that might be unwanted in cases such as

in enterprise scenarios [9]. As a result, a separate class of DLTs were introduced in the

form of permissioned blockchains which focus specifically on privacy of the ledger and

restricted membership.

2.1.2 Permissioned blockchain

In contrast to the open-membership of permissionless blockchains, permissioned blockchains

require the participants to go through a joining protocol, and as a result are closed systems

where each participant knows the identity of every other participant. Permissioned DLT

“provides a way to secure the interactions among a group of entities that have a common

goal but which do not fully trust each other” [9]. Thus, although the participants may

be faulty or malicious exhibiting byzantine behavior, they cannot create or introduce new

members into the network arbitrarily (sybil attack [54]) to gain an advantage. Many per-

missioned blockchain platforms use traditional byzantine fault tolerant (BFT) consensus

like PBFT [58,61], BFT-SMaRt [62], etc.; while these lack the public verifiability property



2.1 Blockchain 25

due to closed membership, they gain in terms of privacy and performance. The choice of

the permissioned DLT primarily on the consensus protocol used by it. Different consen-

sus protocols affect the conditions under which the blockchain ensures safety and liveness

in the presence of Byzantine faults. It also impacts the latency of processing each trans-

action affecting the performance of the overall system. We discuss some of the popular

permissioned blockchain platforms and their safety and liveliness assumptions next.

Hyperledger Fabric supports multiple consensus protocols as a pluggable component

of the ordering service [9]. This includes crash fault tolerant orderer or a Byzantine fault

tolerant order based on BFT-SMaRt protocol [63]. The safety property of BFT-SMaRt

holds under the assumption that the number of faulty participants is less than one third

(< 1
3
) of the total number of participants in the blockchain. For liveness, BFT-SMaRt re-

quires that the network satisfies eventually synchronous property [62]. Hyperledger fabric

follows execute-order flow for transactions and reports transaction throughput of more than

2000 per second [63].

Hyperledger Burrow is a private blockchain platform based on the Tendermint consen-

sus protocol [64]. Similar to PBFT and BFT-SMaRt, Tendermint protocol’s safety property

requires that less than one third of the total participants in the system are Byzantine faulty.

If the safety condition is satisfied, then with the assumption that the network has partial

synchrony property, Tendermint also satisfies liveness.

Hyperledger Iroha is a distributed ledger for decentralized identity, and it uses YAC

consensus protocol [65] which ensure safety and liveness under assumpations similar to

PBFT [58].

Hyperledger Indy uses the Plenum consensus protocol2, which is an implementation

of RBFT [66]. RBFT is based on the PBFT protocol, with parallel PBFT flows for more

robustness. It has the same assumption for safety property that less than one third of total

nodes in the system are Byzantine faulty. For liveness it relies on the assumption of an asyn-

chronous network with synchronous intervals, during which messages are delivered within

an unknown bounded delay. With a lab network setup of 8 nodes, RBFT claims throughput

of upto 5000 requests per second of size 4KB each. We note here that Indy is a public per-

2https://github.com/hyperledger/indy-plenum/wiki

https://github.com/hyperledger/indy-plenum/wiki


26 Chapter 2 Related Work

missioned ledger implying the ledger data can be read by anyone, but the ability to invoke

transactions in order to update the ledger is restricted to the members. Indy is primarily

used for decentralized identity management which we will discuss in detail in Section 2.3.

Apart from the aforementioned DLT platforms, new BFT protocols are being developed

which are pushing the frontiers of performance of the existing ones that can be incorporated

to build better permissioned DLTs. Honey badger of BFT protocols [67], BEAT [68], and

HotStuff [69] are some of the recent BFT protocols that are capable of achieving throughput

of more than 15000 transactions per second [68] in LAN setting. A more comprehensive

study of different consensus protocols for DLTs can be found at the survey by Xiao et

al. [70]. We now shift our focus to smart contracts which actually makes DLTs useful

applicable to a wide range of applications.

2.2 Smart Contracts

The idea of smart contracts goes back to 1997, which at its core is about enforcing and

executing contracts with the help of software and hardware based protocols [71]. Interest-

ingly, the combination of smart contracts and distributed ledgers allows us to eliminate the

requirement of any trusted enforcing entity and build a decentralized enforcement system

for the contracts.

The fundamental functionality that blockchains provide is agreement or consensus

among its participants. This consensus can be on a value, or on a set of instructions. Con-

cretely, smart contracts are programs on which the participants of a blockchain network

have consensus. Additionally, each execution of the smart contract must also be agreed

upon by the participants [72]. Thus, smart contracts have to be executed by all (or major-

ity depending on the consensus requirement) the participants in the network taking part in

the consensus process. The consensus criteria of smart contract execution brings two new

considerations –

(a) The exectution of the contract must be deterministic (so that consensus can be reached).



2.2 Smart Contracts 27

(b) If the contract acts on a state or value, then the blockchain must have consensus on that

state or value too.

There are many smart contract execution platforms including public Ethereum’s quasi-

Turing complete Ethereum Virtual Machine (EVM) [4], and private Fabric’s containerized

smart contract engine which is decoupled from the consensus protocol [9]. Although funda-

mentally the execution of smart contracts are based on consensus on each execution result,

there are two major different flavors of the flow of smart contract execution.

(i) Order-Execute: This is the traditional flow used in most blockchains like Ethereum,

Hyperledger Burrow, etc., which involves three steps – (i) reach to the consensus on

the set of contract execution transactions and also their ordering, (ii) execute each of

those transactions sequentially and deterministically, and (iii) update the state of each

contract on the blockchain ledger according to their execution result.

(ii) Execute-Order: Here, the transactions are first simulated (executed) to find their

results and corresponding change in the current blockchain state. Then these transac-

tion results are ordered and the consensus is reached on them. Finally, the results are

applied on the current state while rejecting conflicting transactions [9]. We discuss

about conflicting transactions with an example later in this section.

The execute-order method of processing smart contracts can have several advantages in-

cluding parallel execution and ability to process non-deterministic transactions with no

safety violation [9]. However, it can have performance limitations due to failed conflicting

transactions which are executed in parallel and then ordered.

We now explain the flow of execution of a smart contract in a DLT using an example.

Consider the simple counting contract as shown in Algorithm 1, which maintains a counter

state from 0 to 99. The count can be changed by incrementing it through CallIncrement, or

doubling it through CallDouble procedures.

The first step is to deploy or install and initialize the contract in the blockchain. This

step involves agreement on (a) the contract program (the instructions), as well as (b) on the

initial state of the contract, that is the count variable in this case. This initial state is decided



28 Chapter 2 Related Work

Algorithm 1: Counting Contract
1: State Variable: count

2: procedure INIT ▷ Contract deployment

3: count← 0

4: procedure CALLINCREMENT ▷ Contract execution

5: count← count+ 1 mod 100

6: procedure CALLDOUBLE ▷ Contract execution

7: count← count× 2 mod 100

through the Init procedure. Thus the blockchain participants agree on the initial value of

count variable to 0.

After deployment, any participant can execute the contract. Such executions are done

through transactions, each of which denote that a participant is executing the contract once.

Transactions include which procedure of the contract is being called, by which participant

or contract, and also the arguments passed by the caller. Later we discuss what happens

if two participants fire two transactions simultaneously. Let the two transactions be of

different types, one CallIncrement (I) and another CallDouble (D).

Using order-execute flow: First the transactions and their order are agreed upon through

the consensus process. The order can depend on various parameters such as transaction fees

in Bitcoin and Ethereum. Thus, the order can be I,D or D, I. After consensus, the trans-

actions are executed by each participant sequentially, resulting in the new count value to

be 2 or 1 respectively in the two orderings. Finally the state of the blockchain, which is

the current value of the count variable, is updated with this new value. The subsequent

transaction executions are applied on this updated state.

Using execute-order flow: The transactions are first executed by the participant on the

current state (say version vt−1 ) to find the result (updated state vt). This updated state,

along with the version number of the last state is sent out as the transaction for consen-

sus. Thus, if I is executed first, then the value of count is calculated as 1, and this is

sent for consensus and ordering. After the consensus is reached the state is updated with

count = 1 (version vt). After this process is complete, if D is executed, then it acts on

the updated state (count = 1 in vt) and after the execution finishes, the new state becomes

count = 2 in version vt+1. Similarly, if first D and then I were executed, then the final



2.3 Decentralized Identifiers and Credentials 29

state would have been count = 1.

The problem with execute-order flow appears when both the transactions are simulated

in parallel by the two participants to find the updated state before sending it for consensus.

On the initial state of count = 0 in vt−1, simulating I results in count = 1, while D results

in count = 0. Then both of these updated states are sent for consensus. Simply applying

these transactions one after another can clearly result in incorrect state. For example, if

the order is agreed as I,D, the correct resulting state should be count = 2. Whereas, by

applying count = 1 first and then count = 0 next from the updated states of the transac-

tions, the final state becomes count = 0, which is incorrect. Therefore, in order to prevent

such conflicting transactions acting on the same state, the version of the state on which the

transaction acts is checked. This is called Multiversion concurrency control [73], used in

databases. Thus the two (or more) parallel transactions both simulated on vt are conflicting,

and thus only one of them can be committed and the rest will fail. These failed transactions

will need to be executed again on the updated state.

Later in Chapter 3 we will observe how the difference in execution methods of smart

contracts results in different system performance. Having an overview of blockchain and

smart contracts, next we delve into the concepts of decentralized identifiers and verifiable

credentials that play a key role towards our goal of blockchain interoperability.

2.3 Decentralized Identifiers and Credentials

The traditional internet relies on centralized authorities (CAs) for identity management

which forms the basis of trust and security [74]. Web browsers and operating systems

come with a list of trusted CAs [30], which are able to issue certificates attesting the iden-

tity of online service providers. It is often difficult for a new organization to introduce

itself into that privileged list [75]. Some of these organizations reduce the centralization

by bringing in a federated structure whereby they permit their subsidiaries or sub-entities

to issue certificates [76]. However, at the root, centralization of trust still exists. In addi-

tion, the method of distribution of the trusted CA list often delays the introduction of new

certifiers [75, 77]. Although user identification and authentication do not rely on this CA



30 Chapter 2 Related Work

infrastructure, centralization of user’s identity on the internet still exists with the service

providers issuing and controlling the identities on their users’ behalf [78].

Recent developments towards decentralization in Web 3.0 aim to depart from the tra-

ditional web’s dependencies on centralized service providers. A prominent feature of

Web 3.0 is the trend of using self-sovereign identities (SSI) [79]. Decentralized identi-

fiers (DIDs) [25] and Verifiable Credentials (VCs) [1] are W3C Recommendations that lay

down a set of specifications which enable parties to own and control their identities.

1. Decentralized Identifiers (DIDs) is a W3C Recommendation [25] for self-sovereign

identity (SSI). A DID is a URI that resolves to a DID document that contains in-

formation about its subject, such as aliases and pseudonyms. It can contain public

keys to authenticate the subject’s signature and service endpoints for communication

with the subject to obtain verifiable credentials (described in detail next). A DID

subject can be any entity ranging from individuals, organizations, consortiums, to

objects and things (e.g. IoT devices). We note here that a DID or its corresponding

DID document on its own is not associated with any real-world identity. A DID only

allows its controller (which can be the subject itself) to authenticate itself, implying

that it has control of the DID through authentication verification methods [25]. Only

a controller is able to modify a DID document. But, in order for a DID controller to

prove some claim about itself (such as its identity) to another party, that claim has to

be attested by a certifier which is trusted by the verifying party. We call such a certi-

fier a “trust anchor” that provides a trust basis between the prover and the verifier. A

mechanism through which such claim certificaton and verification can be carried out

is verifiable credentials.

2. Verifiable Credentials (VC) is a W3C Recommendation [1] which provides a digital

representation for credentials (just like physical credentials) where the issuer is dif-

ferent from the subject to which the credential is issued, and the credential document

is cryptographically verifiable. VCs ensure that merely possessing a credential doc-

ument does not allow it to be presented and verified. Instead, only the VC’s subject

to which the credential is issued is able to present it through Verifiable Presentations

(VPs). In a typical VC and VP workflow (Figure 2.1), an issuer attests to some claim

about a subject by issuing a VC to it. The subject, in this instance, becomes the



2.3 Decentralized Identifiers and Credentials 31

Issuer
Issues VCs

Holder
Acquires, stores,

presents VCs

Verifier
Verifies VCs

Issue

 Verifiable
Credentials

Present

 Verifiable
Presentations

Verifiable Data Registry
Maintains DID documents, schemas,

revocation lists

Verify DIDs and use
schemas

Register DIDs and
use schemas

Verify DIDs and
schemas

Figure 2.1 A typical Verifiable Credential and Verifiable Presentation workflow that
utilizes DID documents and schema maintained in a Verifiable Data Registry [1]

holder of the VC and is able to present the same to verifiers. We note here that no

other entity (including the original issuer) can present the VC on behalf of the holder

since the VP has to be signed by the holder, and the credential itself contains the pub-

lic key (or DID) of the holder against which the VP can be verified. A VP can have

multiple claims attested by multiple same or different issuers, including the subject

itself (self certified credential). A verifier of a VP is convinced about the validity of

a subject’s claim only if it also trusts the issuer that issued the VC. We elaborate on

this fact through an example:

Suppose a person wants to prove his/her COVID-19 vaccination certificate to a veri-

fier. There are multiple COVID-19 vaccines, and say the person is vaccinated using

two separate vaccines. As a result, the person has two different VCs attesting to

his/her claim of “vaccinated for COVID-19” status, say one from issuer V1, and an-

other from V2. Depending on which vaccine the verifier also trusts, the person has

to present either the VC from V1 or V2. Looking ahead, in Chapter 5 and Chapter 6,

we will develop a mechanism to find such common trusted certifiers between the VC

holder and the verifier in a privacy-preserving way.

3. Distributed Verifiable Data Registry (VDR) provides the necessary infrastructure

that supports the DID and VC ecosystem (Figure 2.1). Concretely, the primary func-

tionality of VDR is to store and resolve DID documents against the DID URIs. Fur-

ther, for resilience and trust, VDRs are usually built on distributed ledger principles.

VDRs authenticate the controller(s) of a DID and only allow a controller to modify a

DID document. In addition to maintaining and providing access to DID documents,



32 Chapter 2 Related Work

VDRs store and help in the distribution of several artifacts that are required in a typi-

cal VC workflow. One such artifact is a verifiable credential schema, which specifies

the structure of a certain type of VC. For example, a university degree certificate

schema will usually have details of students, such as their grades. Any issuing entity

can register its own schema, and a pointer to the schema is embedded within the VCs.

During the VP verification process, a verifier fetches the schema in order to get the

metadata and structure that a VC follows.

Hyperledger Indy [34] is a prime example of such a decentralized identity manage-

ment system built on a shared ledger maintained by a pool of members. An Indy

network is a public permissioned ledger allowing open queries but restricting data

publishing capability to designated stewards and trustees, who can create and mod-

ify verinyms. Verinyms refer to DIDs that are associated with legal (or real-world)

identities of DID owners. Thus, in addition to providing the usual functionalities of

a VDR, Indy also allows privileged participants (stewards, trustees) to attest to the

real-world identity claims of DIDs within the registry. Indy also maintains schemas,

public keys for authentication, and revocation information, on its ledger through con-

sensus [34, 66], enabling trustworthy validation of verifiable credentials. In Chapter

4 we use Indy as a building block for identity exchange across different permissioned

blockchain networks.

4. Identity and Credential Messaging. To complement a verifiable data registry, we

need a platform-neutral and interoperable peer-to-peer messaging protocol to com-

municate verifiable credentials and presentations among issuers, subjects, and veri-

fiers. Hyperledger Aries [35] provides such a protocol, called DIDComm, to facilitate

interaction between different DID subjects using DID public keys and services end-

points, with support for encryption. Indy and Aries together provides a complete set

of tools to issue and revoke VCs, and to present and verify VPs. While Indy provides

a decentralized registry to resolve DID documents and also schema and definitions

for VCs and VPs, the actual exchange of credentials through the issuance of VCs,

and the presentation of VPs is a peer to peer process where the issuer, holder, and

presenter interact directly. The Aries DIDComm protocol also supports encryption

which enables privacy between two communicating subjects. Looking ahead, these

tools would be useful in developing the identity exchange protocols for permissioned



2.4 Interoperability in Blockchains 33

DLTs in Chapter 4.

2.4 Interoperability in Blockchains

Since its initial boost in popularity for the use in cryptocurrencies such as Bitcoin [2],

blockchain as a technology has seen rapid growth. This fast paced development of newer

alternatives to the Bitcoin platform in order to support advanced smart contracts (e.g.

Ethereum [4]), faster transactions (e.g. Algorand [5]), and enterprise use cases (e.g. Hy-

perledger Fabric [9]) has led to the explosion of different types of DLTs [3]. This has

resulted to the introduction of several independent blockchain networks in practice, often

based on different DLT platforms, operating as isolated silos with no defined way to in-

teroperate [15]. The term interoperability in the context of DLTs can refer to different

properties which allow two separate blockchain networks, or one blockchain network and

another traditional centralized system to faithfully exchange data. Interoperability often

refers to the ability to counter fragmentation between different systems. The blockchain

ecosystem as a whole is fragmented in different layers, and accordingly the fragmentation

can be categorized into the following types [15]:

(i) Technical fragmentation. Technical fragmentation refers to the differences in the data

communication protocols over the physical layer upto the transport layer.

(ii) Syntactic fragmentation. While technical fragmentation is at the lowest level, at a

higher level syntactic fragmentation denotes the different formats and specifications ac-

cording to which data is stored and communicated within the different DLT networks. This

also includes the difference in representation of transactions, identity, membership, smart

contracts, and other states of the DLT. For example, some DLT platforms might save data

purely in the form of key value stores (e.g. Fabric), while others may save transactions as

a DAG (directed acyclic graph) [80].

(iii) Semantic fragmentation. This refers to the trust model and consensus protocols ac-

cording to which data is recorded on the shared ledger. Different DLTs often have different

consensus protocols, as well as different membership criteria (such as permissioned and



34 Chapter 2 Related Work

permissionless) which govern how transactions are agreed upon and committed. The va-

lidity of any data originating from a source DLT network thus has to be verified by the

destination network as per the consensus criteria of the source network for any faithful

cross-network communication. Moreover, in order for the data to be accepted on the des-

tination network, there must be consensus on the data itself, as well as consensus on the

validity of the data as per the aforementioned criteria.

(iv) Fragmentation in governance. Governance in a DLT system is completely different

from that in centralized systems due to the involvement of multiple stakeholders who do

not necessarily trust each other. Different blockchain networks have different governance

models and policies. As a result, the ways in which a blockchain network’s structure can

be changed (such as new members joining or old members leaving), or the properties such

as transaction fees, etc., varies from DLT to DLT.

The purpose of any blockchain interoperability enabling mechanism is to bridge the

above fragmentations, allowing different blockchain systems to communicate with each

other for transfer of data and assets [18]. We note that technical and syntactic fragmenta-

tion are not new to the blockchain ecosystem, and they also existed in the traditional Web

2.0 landscape. Instead, the research towards blockchain interoperability is more focused

towards bridging semantic fragmentation and the governance aspects [15]. Moreover, in-

teroperability is required not only between DLT instances using different blockchain plat-

forms, but also between different DLT instances using the same blockchain technology (say

Hyperledger Fabric). The blockchain platforms in practice, such as Bitcoin, Ethereum,

Fabric, or Burrow [32] are not designed to make their network instances interoperable with

each other. As a result, different network instantiations using the same technology also suf-

fer from the inability to communicate with each other that severely limits the practicality

of blockchains in general [18, 81].

We categorize the existing literature on blockchain interoperability based on the type of

the two collaborating blockchain systems - permissioned (private) or permissionless (pub-

lic). The basis of consensus in private blockchains is byzantine fault tolerance [40, 58, 67],

in contrast to the consensus protocols in public blockchains which has to deal with open

membership and sybil attacks [5, 54]. Consequently, the mechanisms to prove and verify

the authenticity of data originating from these two different families of DLTs are entirely



2.4 Interoperability in Blockchains 35

different [18]. In the following subsections we discuss the existing works on public-public,

private-private, and public-private blockchain interoperability.

2.4.1 Public-public Blockchain Interoperability

Most public-public blockchain interoperability solutions are designed for cross-blockchain

cryptocurrency transfer and exchange [20, 21, 82]. The primary problem addressed with

respect to cryptocurrency exchange across two or more different parties within the same

ledger or different ledgers is guaranteeing atomicity. Informally, a two party atomic swap

protocol allows parties P1 and P2, holding assets asset1 and asset2 to exchange their as-

sets, such that the exchange has either of the two outcomes: (i) P1 holds asset2 and P2

holds asset1 (ii) the exchange fails and P1 holds asset1 and P2 holds asset2. When the

concerned assets are in two different ledgers then such atomic swaps are called atomic

cross-chain swaps [19].

Hashed time-locked smart contract [19, 83] is one of the most prominent constructs for

achieving atomic cross-chain swaps. A hashlock smart contract initialized using a hash h,

from a cryptographic hash function H(.), ensures transfer of some asset from one party to

the other upon receiving a secret s, such that h = H(s). Therefore, if two hashlocks are

created with the same hash h, then revealing the secret s ensures unlocking both of them

simultaneously, ensuring atomicity. Till the secret is not revealed, the asset is locked within

the hashlock. To prevent assets from getting locked forever, a combination of timeouts with

hashlocks resulted in hashed time-locked smart contracts. However, there are many corner

cases where such mechanism can fail or give unfair advantage to certain parties. Herlihy

et al. [19] is the first systematic analysis of the hashed time-locked smart contract based

atomic cross-chain swaps. They modeled n-party cross-chain swap as a directed graph,

and showed that such atomic cross-chain swaps are not possible if the graph is not strongly

connected. Xu et al. [84] studied the success rate of transactions using hashed time-locked

smart contracts, and showed that interestingly, the success rate of transactions depend a lot

on the exchange rates off the cryptocurrencies.

Practical usability of any atomic cross-chain swap protocol depends on not only its se-

curity guarantees, but also performance, and other features such as the ability to compare



36 Chapter 2 Related Work

values of different assets for trading. Hashed time-locked contract based protocols are slow

and require parties to wait for many minutes for settlements. To counter these disadvan-

tages, Tesseract [21] aims to provide an ideal cryptocurrency exchange which is real-time,

similar to a centralized exchange, as well as trustless like a decentralized exchange. In-

ternally Tesseract uses a trusted execution environment [85], which is a hardware backed

secure enclave protecting the integrity and confidentiality of software execution. A sepa-

rate work XCLAIM [20] introduces the notion of cryptocurrency-backed assets, and uses it

for cross-chain cryptocurrency exchange. The primary advantage of XCLAIM over hashed

time-locked contracts is the requirement of significantly less transaction fees for exchang-

ing assets, while not relying on any trusted party / trusted hardware.

The different cross-chain swap protocols discussed above are limited to their own dif-

ferent sets of blockchains, and applicable in different scenarios. For example, hashed time-

locked smart contracts require the availability of an identical cryptographic hash func-

tion in the different blockchain smart contract systems. On the other hand, in case of

cryptocurrency-backed assets or side-chains, everyone needs to trust a third ledger which

is an unrealistic expectation. In a very recent work, Thyagarajan et al. [86] introduced a

protocol for universal atomic swaps which is applicable for all permissionless blockchains,

even those which do not support custom scripting as smart contracts. The centerpiece of

their contribution is leveraging verifiable timed signatures [87] for designing a timelock

without smart contracts. This protocol supports not only 2-party swaps, but also complex

swaps extending to cyclic swaps.

Other notable public-public blockchain interoperability systems include payment chan-

nel networks [23, 88], sidechains [89], and anonymous multi-hop locks [82], SmartSync

[22]. Besides cross-chain asset exchange, other interoperability protocols such as Om-

niLedger’s Atomix [90] allow shards of the same blockchain to communicate through

atomic transactions. Overall, there exists robust as well as provably secure protocols in the

literature, for cross blockchain communication between two permissionless ledgers. Most

of these techniques fundamentally rely on the open nature of permissionless ledgers which

allow public verification of the validity of transactions. However, the different mechanisms

need to be developed for private blockchains as discussed next.



2.4 Interoperability in Blockchains 37

2.4.2 Private-private Blockchain Interoperability

Compared to public-public blockchain interoperability protocols, private-private interoper-

ability mechanisms are much less abundant [18]. The first network-neutral interoperabil-

ity protocol for verifiable transfer of data and assets between two different permissioned

networks was introduced by Abebe et al. [15]. From an infrastructure perspective they de-

veloped a relay service for connecting the networks, where the relay could be maintained

by one or more participants of the networks. Here, the verifiability of cross network data

transfer is assured through the use of proofs by attestations. The consensus view on some

data is captured by attaching attestations (in the form of digital signatures) of the requisite

number of participants of the originating network. The data is then bundled with the attes-

tations and sent to the destination network, where these proofs are validated. Depending

on the particular blockchain platform such as Fabric or Corda, the specific digital signa-

ture scheme for attestations may vary, however the overall protocol remains agnostic of

the network implementations. The trust basis of this protocol lies with the identity of the

permissioned network participants which is used to project the consensus view outside the

network boundary.

Later Hermes [91] middleware introduced crash recovery capabilities making the gate-

ways fault tolerant for robust blockchain interoperability. Hermes uses a variant of two-

phase commit protocol (2PC) called ODAP-2PC. In [92], the authors proposed a formal

model for state sharing problem across permissioned ledgers. Based on this model, they

designed a protocol which leverages a public blockchain as a secure bulletin board for state

commitments. Publishing views to an immutable public ledger prevents equivocation and

allows the protocol to maintain correctness even in an adversarial model where all mem-

bers of a committee can be malicious. Furthermore, intervals at which state commitments

are published on the public ledger indicate a bound on the age of data exposed by the

permissioned ledger.

Notably, in each of the existing private-private interoperability protocols, the trust basis

is the identity of the permissioned network participants. The identity management protocol

is however not deliberated on, and it is assumed that identity management is handled off-

chain and coordinated in an ad-hoc fashion between the stakeholders. As a result, there is a



38 Chapter 2 Related Work

clear gap, and development of decentralized identity management protocols for cross-chain

identity exchange is an essential requirement towards end-to-end private-private interoper-

ability systems.

2.4.3 Public-private Blockchain Interoperability

Public-private blockchain interoperability involves transfer of data from a permissioned

network to a permissionless network and vice versa. Depending on the type of the ledger

from where the data originates, mechanisms to validate its authenticity differs. In [93],

the authors devised a cryptographically secure protocol to enforce fair exchange of data

between a private blockchain and a public blockchain. Concretely, the protocol allows a

private blockchain to expose some data along with proofs validating its authenticity to an

external party, only if the external party pays some monetary reward to a participant of the

private blockchain. In this scheme, the permissioned blockchain presents a zero knowl-

edge proof to the external party to guarantee fairness in the exchange of private data with

the payment from the external party.

Departing from the usual chain relays that target PoW consensus based blockchains,

Verilay [94] presents a verifiable blockchain relay for proof of stake DLTs, specifically the

ones that are based on Practical Byzantine Fault Tolerance (PBFT) [58]. While Verilay is

designed for interoperability across public proof of stake ledgers, it is capable of validat-

ing a ledger’s state that uses ‘opened up’ PBFT consensus protocol [64], and hence can be

tweaked to validate permissioned ledger states also.

Notably, in spite of some existing works towards public-private blockchain interop-

erability, no existing protocol provides concrete guarantees of safety and liveness of an

interface between a permissioned ledger and a permissionless ledger. Informally, a public-

private interoperability protocol must ensure that (i) the permissioned network participants

agree on the data (or assets), as well as their order in which they arrive from outside the

permissioned ledger boundary, and (ii) any data originating from a permissioned ledger

must be verifiable by external entities with respect to the consensus state of the ledger. As

a result, there exists a gap in terms of public-private blockchain interoperability that need

to be addressed.



2.5 Cross-Blockchain Identity Management 39

2.5 Cross-Blockchain Identity Management

Cross-blockchain identity management is an essential requirement especially for data shar-

ing by private blockchains where the verification of proofs outside the boundary of a per-

missioned ledger requires participant identities such as public keys. In the permissionless

domain there are a range of efforts attempting to address identity issues which include

naming services such as Ethereum Name Service (ENS) [95] and Polkadot’s naming sys-

tem [96], as well as a number of solutions based on the Decentralized Identity Framework

such as uPort [97], and Ontology [98]. However, these systems are either designed to sim-

plify user experience in public networks, such as addressing an entity with a user-friendly

name instead of an arbitrary byte string, or to provide a user-facing identity solution for cre-

ating and sharing credentials. These systems don’t address the general problem of resolving

and verifying identity issued by different ledgers for enabling cross-ledger communication.

Permissioned networks built on Corda [29] can transact states representing data and

assets with each other via the Corda Network [99], a global publicly-available network that

uses a common root of trust for identity. Though a consortium of nodes may optionally

choose to deploy a segregated network with its own trust root for privacy and confidential-

ity, it will be unable to communicate directly with the rest of the global Corda Network

unless it merges with it. The use of Corda Network however has a key limitation: it is re-

stricted to the Corda protocol and doesn’t allow integration with other DLT protocols like

Fabric [9] and Besu [100].

Hyperledger Cactus [101] project for cross-chain interoperability leaves networks au-

tonomous and in control of their interactions with other networks, but currently relies on

manually sharing network identity information. Recently proposed decentralized identity

management models such as Decentralized identifiers (DIDs) [25] and Verifiable Creden-

tials (VCs) [1], which are W3C Recommendations, are being adopted for identifying en-

tities and proving claims in decentralized settings. However, there is still a requirement

of a decentralized identity management infrastructure, and protocols, capable of exchang-

ing identities across different blockchain networks, especially permissioned networks. We

work towards these goals in Chapter 4 of this thesis.



40 Chapter 2 Related Work

2.6 Trust Negotiation

Trust negotiation is the process of disclosing credentials and other information between

two or more parties, such that sufficient trust can be established for them to transact in fu-

ture. This notion of trust negotiation is not new, and the problem of trust negotiation have

been faced by service providers in the Semantic Web [102]. The idea of privacy-preserving

trust negotiation is to minimize the exposure of sensitive information while determining a

common trust basis between the parties. In Web 2.0, trust basis is limited to a predefined

set of certificate authorities (CAs) [30] which often come preinstalled with web browsers

and operating systems. However, in a completely decentralized setting, in order to initiate

a trusted interaction across two or more parties without relying on any canonical trusted set

of CAs, negotiation of trust basis is essential. From a high level, privacy-preserving trust

negotiation involves determining a common certifier that acts a trust anchor between two or

more parties, without revealing any certifier that is not common between them. In Chapter

6, we define the most generalized form of symmetric trust negotiation as Private Certifier

Intersection.

This problem is conceptually similar to Private set intersection (PSI) [103]. PSI has

been extensively studied, with a wide range of solutions based on garbled circuits [104],

homomorphic encryption [105], oblivious transfer [103], and other techniques [106–112].

However, there is no straightforward way of using PSI as a black-box to achieve privacy-

preserving trust negotiation, particularly in the face of malicious adversarial corruptions.

The key reason being the trust anchors in practice are often well known entities such as gov-

ernments, large companies, etc. As a result, a malicious party can input a list of all plausible

trust anchors (universal set) as input to the PSI in order to reveal the honest party’s trust

anchors. Intuitively, some form of validation of the inputs from the parties is required for

privacy-preserving trust negotiation.

Private intersection of “certified sets”, introduced in [113], is an augmentation of PSI

with the additional requirement that the input claim-sets are certified by some certification

authority (CA). However, this primitive has fundamentally different privacy goals as com-

pared to privacy-preserving trust negotiation as it assumes that the information of the CAs is

public and that the two parties agree apriori on which CAs they mutually trust. Conversely,



2.6 Trust Negotiation 41

in the case of privacy preserving trust negotiation, the CAs (certifiers) are, in fact, the input

to the protocol (and thus cannot be made public apriori) while the claims are public. We

could also have a variant of this problem where the claims are additionally private.

Hidden-issuer anonymous credentials (HIAC), introduced very recently in [114], is a

related cryptographic primitive that allows a credential holder to prove its claim(s) to a

verifier without disclosing the identity of the credential issuer (i.e., the certifier). However,

HIAC inherently requires the set of certifiers trusted by the verifier to be published as an

“aggregator”, thereby revealing the identity of each such certifier. Hence, while one could

use for trust negotiation, such an adaptation would only achieve one-sided privacy since of

the parties would have to make its list of certifiers publicly available.

Issuer-Hidden Attribute-Based Credential [115] is another related system in which a

user can prove a credential issued to it without revealing which issuer among a set of is-

suers acceptable to the verifier issued that credential. Similar to HIAC, this system also

provides one-sided privacy while revealing the certifier set of the verifier. Moreover, the

concrete solution presented in [115] uses a trusted setup, which is costly in practice.

The “secret handshake” family of protocols [116, 117] enable (role-based) authenti-

cated key exchange between parties without revealing any information beyond the common

group memberships shared by the parties. These protocols, however, differ fundamentally

from privacy-preserving trust negotiation in the sense that: (a) they do not capture the

notion of validating certificates and claims, and (b) the process of issuing membership cre-

dentials is part of the protocol itself ( in practice issuing credentials/certificates is a process

independent of trust negotiation).

In Chapter 5, we present two variants of solution for trust negotiation across different

permissioned blockchain networks. Extending in Chapter 6 we generalize the problem of

symmetric trust negotiation as Private Certifier Intersection.





Chapter 3

Public-Private
Blockchain Interoperability

Business-to-Business (B2B) and Business-to-Consumer (B2C) online marketplaces have

gained much attention nowadays within various sectors, including e-commerce, ride-hailing,

cloud service provisioning (e.g., cloud federations), supply-chain management, etc. How-

ever, there has been a continuing debate about the market-monopoly and unfairness they

created in the digital economy [118, 119]. Such platforms typically work as the central

agent or broker to interconnect various businesses and consumers. In such a firm-controlled

marketplace, supporting trustworthiness and unbiased business transactions is always a

concern. Blockchain is a natural extension to help trustworthy and bias-free business by

allowing the stakeholders to interact over a decentralized marketplace. As a result, various

recent works advocate for developing blockchain-based electronic marketplaces [120–125].

However, there is a fundamental limitation of the current blockchain technologies to sup-

port this, as discussed next.

An electronic marketplace is typically a multifaceted network with one or more closed

business networks collaborating through B2B transactions and, finally, an open consumer

network having B2C operations [17]. For example, in a typical supply chain, manufac-

turers, wholesalers, and retailers form different closed business networks, and finally, the

end-customers create an open consumer network. Another example is cloud federation

43



44 Chapter 3

platforms like OnApp [126], where small cloud service providers (CSPs) construct a closed

consortium to provide cloud resources to customers. Depending on customer requests, the

transactions flow from the open consumer network to various closed business networks,

and the service is finally delivered back to the open consumer network.

Emerging blockchain networks such as IBM Food Trust [27], TradeLens [10], Mar-

copolo [28], etc., use private (permissioned) distributed ledger-based systems like Hyper-

ledger Fabric [9] and Corda [29] to form closed consortiums of businesses. However, a key

limitation of the existing private blockchain platforms is the restriction of their applicability

within only closed consortiums where data and assets are not required to be communicated

outside the network boundary. Thus, Fabric, Corda, or other existing private blockchains

do not support any interface or protocols for interacting with the open network outside,

which is crucial for building consortiums of service providers acting together to deliver

services to the consumer network.

However, there are challenges in designing such interfacing.

• First, the businesses, as well as the consumers, can exhibit byzantine behavior in the

absence of a firm-controlled marketplace. Therefore they can collude to deceive and

take control over the consortium decisions.

• Second, the consumers’ service requests need to be agreed upon by the businesses

within the closed consortium along with their ordering, before they can be processed.

Otherwise, any malicious business can take priority over a profitable service request,

thus affecting the fairness of the system. Although private blockchain can ensure

transaction execution order within the closed network, they do not support trans-

actions from outside the closed network pertaining to Sybil attacks from the open

network participants [54].

• Third, the service responses from the closed consortium also need to be transferred

back to the consumer who requested the service. Such information must be verifiable

by the consumers against the valid consensus at the business network. Further, the

privacy of the information must be ensured.

Towards developing a decentralized collaborative architecture for service providing



3.1 System Model and Design Challenges 45

consortiums, in this chapter we introduce CollabFed, which addresses the above challenges

by building a novel decentralized interface between the private blockchain networks and the

open network of consumers. CollabFed ensures multi-party consensus validation and con-

siders threats such as Sybil attacks and byzantine behaviors of the participants. The decen-

tralized interface is engineered through a unique combination of the public blockchain and

private blockchain networks by enabling interoperability between them to support trusted

and secure data transfer in both the directions, that is (a) from the consumers to the busi-

nesses and (b) from the businesses to the consumers (Contribution-1). Our Consensus on

Consensus mechanism handles the transfer of data from the open network into the private

blockchain in a secured and verifiable manner (Contribution-2). We employ a novel mech-

anism based on collective signing (CoSi) technology [31] to generate verifiable results from

the consortium, which is accessed securely by the consumers (Contribution-3). Moreover,

CollabFed facilitates the collaboration among the participating businesses and enables fair

scheduling of requests through a distributed consensus. Performance in terms of latency

is of utmost importance here, so we analyze the effect of order-execute and execute-order

transaction execution workflows on the performance of request scheduling.

Considering a use case of a decentralized brokerless cloud federation, we have done

a proof-of-concept (PoC) implementation of CollabFed using Ethereum as the public blockchain

platform and Hyperledger Fabric, and Burrow as the two different candidates for the pri-

vate blockchain platform, and tested it with three emulated CSPs (Contribution-4). The

experiments prove the viability of CollabFed as a platform for service provisioning con-

sortiums, which supports interaction between a private blockchain network and the end-

consumers. Evaluation of the performance shows acceptable overhead on the federation,

and a Mininet-based emulation with 32 CSPs also validates its scalability over a large geo-

distributed setup.

3.1 System Model and Design Challenges

We consider the interconnecting network between the consumers and the closed consor-

tium to be partially synchronous where there is an upper bound ∆ on the time of message

delivery [127, 128]. If a message is not received within the time-bound ∆, then it is con-



46 Chapter 3

sidered as a message fault. The intuition is that in a realistic communication, the messages

must have arbitrary but bounded delay. This results in challenges such as unordered mes-

sage delivery and message drops. Additionally, we consider different types of attacks that

might affect the above operations, as follows.

3.1.1 Threat Model

A decentralized consortium is prone to the following types of attacks, which we take care

of in the design of CollabFed.

Byzantine participants: We consider that at most 1
3

of the participants, both for busi-

nesses and consumers, may exhibit byzantine behavior [40,58,62,66]. A consumer can try

to deceive the consortium by sending different requests to different businesses, while the

businesses can collude themselves to alter the decision protocols’ results to take control of

the consortium.

Sybil attacks: BFT consensus protocols assume that each participant has only one distinct

identity [58,66,128]. If somehow one participant can generate multiple identities, then us-

ing such redundancy, it can launch a “Sybil Attack” [54]. The consumers thus can launch

a Sybil attack to the closed consortiums by using multiple identities.

Impersonation attacks: As a decentralized architecture, the consortium does not have

a single spokesperson responsible for communicating with the open network consumers.

Exploiting this, a malicious business from the closed consortium might try to deceive a

consumer by posing as the consortium’s spokesperson and providing false information.

Leakage of sensitive information: The business and the consumers communicate over an

open, unsecured channel through message passing. Therefore, sensitive information like

credentials, contact information, etc., might get leaked.



3.1 System Model and Design Challenges 47

3.1.2 Design Philosophy and Challenges

CollabFed’s primary objective is to develop a mechanism through which any closed con-

sortium designed using a private blockchain platform can interface with open consumer

networks. Considering the threat model as discussed above and the possibility of unordered

message delivery along with message drops, in CollabFed, the following two guarantees

need to be ensured at the consortium interface.

Definition 1. Consortium Interface Safety - The interface should ensure that all the cor-

rect consortium members agree on the same set of incoming consumer requests in same

order.

Definition 2. Consortium Interface Liveness - The interface must ensure that all the

correct consumer requests are eventually be processed and committed by the closed con-

sortium.

Thus, a mechanism is needed such that the interface meets the safety and liveness guar-

antees, and the consortium members are in a consensus on each request. To achieve con-

sensus over the ordering of consumer requests from the open network, we propose to use

public blockchain platforms [4, 5, 50] for interfacing the closed consortium to the con-

sumers of the open network. The consensus algorithms over a public blockchain setting

are designed to be resistant to Sybil attacks. Therefore, using a public blockchain platform,

the consumers’ requests from an open network can be ordered. However, merely clubbing

together any public and private blockchain is not enough to enable the targeted consortium

interface; there are open challenges that need to be solved.

(i) Passing consensus of one network to another: The public and the private blockchain

networks run their own consensus protocols independently. The interface should pass

the consensus information from one network to another by ensuring (i) security, and

(ii) accountability. The interface should guarantee that the consensus information of

one network is verifiable at the other network.

(ii) Transferring sensitive information from the closed network to the consumers:
Once a consumer request is scheduled and processed by the closed consortiums, the



48 Chapter 3

associated service information such as access credentials, invoice, shipping informa-

tion, etc., need to be passed to only the targeted consumer who has requested for the

service. Therefore, merely putting the information to the public blockchain will not

help, as anyone will access it. Protocols need to be designed to share such sensitive

information with the targeted consumer only.

(iii) Verifiability of the consortium decision: The consortium’s decision of scheduling,

service provisioning, etc. comes through a consensus over the private network. How-

ever, once this information is forwarded to the public network, the consumers should

be able to verify such decisions to avoid any byzantine behavior from the colluded

consortium members.

3.2 Decentralized Consortium Interface

The functionality of CollabFed Consortium Interface is broadly two-fold: (a) transferring

consumer requests from the open network to the closed consortium members (Figure 3.1),

(b) transferring consortium responses to the open network consumers in a secure and ver-

ifiable way (Figure 3.2). The Consortium Interface Safety is achieved using two rounds

of consensus over the consumer requests – (1) regular consensus (mining) of the public

blockchain, and (2) A Consensus on Consensus mechanism. The details follow.

Consumer

C
on

su
m

er
 C

lie
nt

Public Blockchain
Consensus

Private Blockchain
Consensus

CM

CM

CM

CM

Event Trigger

R
eq

ue
st

Consortium

Endorsement
Collection

approved /
rejected

Figure 3.1 Transferring Consumer Requests from Public Blockchain to the Consortium
Members (CMs)



3.2 Decentralized Consortium Interface 49

CM
Response

Off-chain
Multi-signature

collection

Consumer

C
on

su
m

er
 C

lie
nt

Decryption &
Validation

Consortium

CM

CM

CM

CM

Consortium Consensus

Encryption

Public
blockchain

Blockchain
fallback

Figure 3.2 Secure and Verifiable Data Transfer from CMs to Consumers

3.2.1 Regular Consensus (Mining) over Public Blockchain

Before scheduling and processing any consumer request, the consortium members must

reach a consensus on the same. Moreover, there needs to be a consensus on the order in

which the requests are to be considered to ensure Consortium Interface Safety. This ensures

that a malicious member of the consortium cannot collude the network by triggering the

scheduling of an invalid consumer request or take priority on a specific consumer request.

CollabFed uses public blockchain in conjunction with the private consortium to support

this. However, for supporting interoperability between the two networks, the consensus

has to be propagated between them.

To interact with the consortium, consumers send their requests through the public

blockchain. These requests are formed as transactions to a smart contract - User Request

Contract, deployed in the public blockchain. Just like a web interface of a central firm-

controlled platform, this smart contract acts as the communicating point for the consumers

to reach the consortium, albeit in a decentralized way. The “consumer request” transac-

tions are then committed to a block in the ledger through the public blockchain platform’s

mining/consensus process. For example, Ethereum used a modification of one of the most

popular consensus protocols: “proof of work” (PoW) [2], and recently it switched to an

alternate consensus protocol - Proof of Stake [50] [129] on September 15, 2022. There

are several other consensus protocols used in different blockchain systems such as Bitcoin-



50 Chapter 3

NG [51], Byzcoin [52], Algorand [5] etc.

These consensus protocols have different safety and liveliness assumptions of their

own; however, their common objective is to reach consensus on a block of transactions.

Moreover, since these are permissionless blockchain protocols, they are designed to resist

Sybil attacks.

Once a block is mined and committed in the public blockchain, this ensures that there

is a consensus on the particular block and their order in which they are committed, since

each block is linked to the previous one through its cryptographic hash. Moreover, the set

of transactions in each block also has a fixed packing order for the smart contracts’ deter-

ministic serial execution. Despite these properties, public blockchain consensus itself is

not enough to satisfy Consortium Interface Safety, and consortium members cannot simply

pick user requests from the public blockchain and start processing them. The reasons are

as follows. (1) Due to the partially synchronous network, some consortium members might

not get the mined block in time and thus cannot participate in its scheduling. (2) Mali-

cious consortium members may introduce and schedule invalid consumer requests that are

not mined at all. (3) Public blockchain consensus protocol like PoW, often goes through

temporary forks [130], resulting in conflicting consumer requests or conflicting ordering in

different members. Thus, CollabFed has to carry out a second round of consensus, which

we call Consensus on Consensus.

3.2.2 Consensus on Consensus

In [81], the authors have shown an interesting result that states that cross-chain communi-

cation is impossible without a trusted third party. To circumvent this impossibility result,

CollabFed uses a novel idea where the private consortium members also participate in the

public blockchain to represent themselves as their own trusted agent. Whenever a new

block is committed in the public blockchain, the trusted agents corresponding to the private

consortium members get an event-trigger, which in turn invokes a Propagation Contract

in the private blockchain network. Before invoking the Propagation Contract, the transac-

tions of the public blockchain can be verified individually by the consortium members by

existing methods such as Simplified Payment Verification (SPV) as used in standard public



3.2 Decentralized Consortium Interface 51

blockchain like Bitcoin [2].

The task of the Propagation Contract is to collect verification endorsements from

consortium members for each consumer request. The verification endorsements are the

digitally signed certificates from the consortium members, indicating that the correspond-

ing members agree on the processing of a consumer request committed over the public

blockchain. As per the standard BFT protocols [52, 58], a consumer request can be com-

mitted for scheduling in the private consortium if the majority (2
3
rd) of the consortium

members endorse the request transaction. The endorsement protocol used in the Propaga-

tion Contract is shown in Figure 3.3. The details follow.

B1 B2 B10 B11

PB1 PB2 PB14 PB15

T1

Offset
= O1

CM1

SPV
(B1,O1)

E(T1)
EC	=	1
B1,	O1

CMk

Propagation
Contract T1

 is
 re

ad
y 

fo
r s

ch
ed

ul
in

g

E(T1)
EC	=	m
B1,	O1

m
endorsements

committed

m > 2/3rd of
consortium
members

SPV
(B1,O1)

Private
Consortium

Public Ledger

Private Ledger

Consumer

Miner
Public

blockchain
consensus

T1

Endorsement
=

E(T1)

Endorsement
=

E(T1)

Propagation
Contract

Figure 3.3 Propagation Contract: Consensus on Consensus

Endorsement Initialization: Whenever a consortium member receives a “consumer re-

quest” transaction through the event listener of the public blockchain, it checks whether

there is already an endorsement available in the private ledger corresponds to that trans-

action. If no endorsement is available, it initiates the endorsement collection process for

that particular request by initiating the endorsement-count (EC) variable set to 1,

and committing the signed endorsement in the private ledger. The request is also accom-



52 Chapter 3

panied by a sequence number for representing its order. This sequence number is formed

as {blocknumber, offset}, indicating the block in which the request transaction is

committed in the public blockchain, and its packing order inside the block.

Endorsement Propagation: As other consortium members also get the same consumer

request and with the same {blocknumber, offset} through the event listener of the

public blockchain, they also execute the Propagation Contract for it, which adds their

signed endorsements while incrementing the EC. Each execution of the Propagation Con-

tract is also a transaction. Therefore, each endorsement also goes through the consensus

process of the private blockchain.

Commitment: Thus, the number of endorsements for a request goes up until it reaches

greater than two-third of the number of consortium members (EC > 2
3
|consortium|).

At this point, the majority of the consortium participants have consensus on the request

through endorsements, and each such endorsement has a consensus of the network. Thus,

the consumer request is marked as approved and ready to be scheduled.

Theorem 1. The Consensus on Consensus mechanism ensures consortium interface safety

and consortium interface liveness.

Proof. Whenever a transaction is committed in a block in the public blockchain, it im-

plies all its correct participants including consortium members agree on it, along with

the (blocknumber, offset). The Consensus on Consensus mechanism endorses the

transactions from the public blockchain and then commits the endorsements in the private

blockchain. A transaction is scheduled only when more than 2
3

of the consortium members

endorse the transaction. Given that each endorsement transaction also undergoes consensus

in the private blockchain, and the given verifiability property of the private ledger, a trans-

action from the public blockchain is executed only when the majority of the consortium

members endorse it. Further, the transactions are executed in the order of (blocknumber,

offset) parameters of the public blockchain ensuring agreement on the order. Thus the

Consensus on Consensus mechanism ensures interface safety.

Consortium interface liveness depends on the liveness of the public blockchain. The

event-listeners for correct consortium members eventually trigger the propagation contract



3.2 Decentralized Consortium Interface 53

when a transaction is committed in the public ledger. Even if there is a temporary fork,

the propagation contract is executed when the transaction is finally committed in the public

ledger.

The Propagation Contract triggers Scheduling Contract that schedules the requests

based on a predefined business logic. After a request is scheduled and processed over

the closed consortium, the service results have to be transferred back to the consumers.

The details follow.

3.2.3 Secure and Verifiable Response Transfer

A consortium is operated collectively by its participant businesses. Hence, any data/information

provided by it has to be the result of the collective consensus process. Thus, in the absence

of a central coordinating platform, this consensus has to be collected and verified by the

consumers, without depending on any trusted agent. There can be two variations of infor-

mation originating from the consortium. (1) Consortium information such as information

about the participating businesses, service catalogs, etc., and (2) Request responses that

are the results of scheduling and processing consumer requests such as a digital document.

Both of these kinds of data are generated collectively by the consortium members

through the private blockchain’s consensus process. However, this consensus informa-

tion has no manifestation outside this closed network. Thus, consumers being outside the

consortium and not participating in the consensus protocol cannot verify the correctness

of the data that is committed through transactions in the private blockchain. A separate

protocol has to be designed through which information transfer from the consortium to the

consumers can be validated outside the private network concerning the consensus of the

participating businesses. Moreover, although consortium information can be considered

publicly available, the Request responses to the consumers may contain sensitive informa-

tion that should remain confidential while being transferred across the open network of the

public blockchain.

In CollabFed, we use the concept of Collective Signing (CoSi) [31] where a set of con-

sortium members collectively sign a valid information to make it verifiable. We utilize



54 Chapter 3

Boneh-Lynn-Shacham (BLS) cryptosystem [131] for collecting and aggregating signatures

from the individual participating businesses. Similar to Byzcoin [52], which uses CoSi to

reach to a BFT consensus, a piece of information posted by the consortium through the

public blockchain is considered to be valid, if and only if it has been signed by at least 2
3
rd

of the consortium members. The details follow.

BLS Signatures

A BLS signature is computed as σi(m) = H (m)xCi , where m is the message that is to be

signed, H (.) is a cryptographic hash function, and xCi
is the secret key of the consortium

member Ci. The property that makes BLS signatures special is that they can readily be

extended to multi-signatures. Therefore, for n members participating in the consortium,

C1,C2, ·,Cn, the aggregated multi-signature can be calculated as follows.

σ1..n(m) = H (m)xC1
+xC2

+..+xCn =
n∏

i=1

H (m)xCi

= σ1(m)× σ2(m)× ..× σn(m) =

n∏
i=1

σi(m)

(3.1)

This aggregated multi-signature σ1..n(m) can be verified with the help of the public keys

of the individual consortium members. This verification is done by comparing the pairing

operation between the aggregated signatures and the aggregated public keys. The aggre-

gated public key for n members is calculated as
∏n

i=1 YCi
, where YCi

is the public key of Ci.

Posting information using BLS

Any information about the consortium is communicated to the consumers by posting the

same in the public blockchain. Such information originates from the result of the Collab-

oration Contract in the private blockchain, which is responsible for reaching consensus

on them. This resultant data like updated information or updated catalog, etc. must be

collectively signed by at least 2
3
rd of the participating consortium members. This again

has two different levels of security requirements for Consortium information and Request

responses.



3.2 Decentralized Consortium Interface 55

Posting Consortium Information to the Public Blockchain: Let I be a piece of pub-

lic consortium information that is meant to be seen by all consumers. I is proposed by a

consortium member in the private blockchain where consensus is reached over it. To post

this information over the public blockchain, the consortium members over the closed net-

work construct a Signing-Request message as sign{H (I) ,B, σB(H (I))} and forward

it to all other consortium members. Here B is a bitmap indicating which members have

signed the message and σB(H (I)) is the aggregated collective signature on the hash of the

message I. Every consortium member, upon receiving this message, adds its own signa-

ture through multiplication, as shown in Eq. (3.1), updates B and sends back the response.

Once signatures from majority of the members have been aggregated, the final response

message {I, H (I) ,B, σB(H (I))} is posted in the public blockchain. The authenticity of

this message can be easily verified using the public keys of the members who have signed

the message, and the integrity can be checked by computing and comparing the hash of

I. This verification process is carried out by the Consumer Client and is transparent to all

the consumers. The Consumer Client only accepts those messages which have the required

number of signatures (> 2
3
|consortium|) along with the proper hash.

Posting Private Information for a Consumer: Posting private information to a con-

sumer through the public blockchain requires some mechanism to preserve confidentiality.

This is done by encrypting the message using the public key U of the consumer. The

message is also similarly authenticated using the aggregated multi-signature of the con-

sortium members. Thus the final message which is posted in the public blockchain is

{< m >U , H (< m >U) ,B, σB(H (< m >U))}, where < m >U denotes a message m en-

crypted using the key U . Thus, only the consumer can decrypt the message using its secret

key xU . The Consumer Client handles the decryption and verification of authenticity.

3.2.4 Optimizing the Latency for Signature Collection

Since the messages to be transferred from the consortium to the consumers already have

to be committed in the private blockchain, the multi-signature collection process is de-

coupled and carried out off-chain to improve the latency. Thus the consortium members

communicate through peer-to-peer messages to form the verifiable signed message. This



56 Chapter 3

multi-signature mechanism’s latency depends on the way the members forward the mes-

sages and collect back the signatures to generate the final payload by aggregating them.

Thus a communication tree is formed along which the singing request and the signatures

are exchanged. One extreme case of this is when one of the members acts as the leader,

and the other members sign their messages and forward them back to it. The leader con-

structs the collective signature by including its own signature and validates other members’

signatures against their public keys.

This strategy is likely to have low latency because of its star topology with a path

length of at most one but will have high signature combination computation overhead for

the leader. Another extreme is to consider a linear chain of consortium members through

which the above round of messages propagate; this will have less computation overhead

for each member but will have high network latency. CollabFed uses an M -ary tree struc-

ture to propagate multi-signature collection messages through which individual signatures

are collected, and the multi-signature is constructed following Eq. (3.1). Interestingly, the

latency for multi-signature generation changes with the value of M , which we analyze in

Section 3.4.

Handling denial of service: Off-chain multi-signature collection improves the latency

of the process. However, it introduces the risk of denial of service. Although the mes-

sage to be signed is first committed in the private blockchain through the consensus pro-

cess, some malicious consortium participants may try to halt the consortium through denial

of service attack by not responding to signature collection requests. As a result, to pre-

vent that and detect the faulty members to hold them responsible, CollabFed resorts to

a blockchain contract-based signature collection after the off-chain protocol fails (possi-

bly with a timeout). For a message, the Signature Collection contract is initialized in a

similar way as Propagation Contract, and gathers BLS signatures of the members. Thus

any non-cooperating member is detected through this transparent process, who can be held

responsible.



3.3 Use Case Implementation: Cloud Federation 57

3.3 Use Case Implementation: Cloud Federation

To evaluate the potential of CollabFed, we have implemented a use-case of cloud fed-

erations like OnApp, where a group of CSPs participate in a single marketplace to offer

cloud infrastructure such as virtual machines (VMs) as a service (IaaS) to the consumers.

Traditionally cloud brokers [132] or centralized marketplaces like OnApp coordinate all

interactions between the CSPs and the consumers. To design a fully trustless decentralized

architecture for cloud federations, we use CollabFed to implement a private network of

CSPs and a public network of consumers, called CollabCloud. Apart from the basic func-

tionalities of CollabFed, CollabCloud implements a Fair Scheduling Contract within the

CSP consortium to schedule the VM requests among the participating CSPs while ensuring

fairness in terms of profitability of the CSPs and quality of service (QoS) for the consumers.

The Fair Request Scheduling Contract takes into account the contribution of the indi-

vidual CSPs in the federation and schedules consumer requests in proportion to it. We de-

fine the federation F = {C1,C2, . . . ,Cn} as a collection of CSPs Ci. A CSP Ci can support

certain VM configurations which are represented by VCi = {vm1, vm2, . . . , vmm}. Thus

the catalog of the federation is the union of all such VM configurations being offered by

the individual CSPs, represented as C =
⋃

Ci∈F
VCi . Similar to the catalog, the contribution of

each CSP Ci is a set of VM offerings, denoted by OCi = {o1, o2, . . . , om}. A VM offering is

defined as a three-tuple: o = {vm, k, c}, where vm denotes a VM configuration, k denotes

the quantity of the VMs of the particular configuration the CSP can offer, and c denotes the

expected pricing of that VM type. A consumer request for a VM is defined as a four-tuple:

CR = {CRid,U , vmj, T}, where CRid is the unique identifier of the consumer request, U
is the public key of the consumer making the request, vmj ∈ C is the VM configuration

selected from the catalog C, and T is the duration for which the VM is requested.

The fair scheduling smart contract is shown in Algorithm 2. The input to the algo-

rithm is a consumer request CRi, the proportions of contribution of all CSPs in the fed-

eration K = {K̂Ci
| Ci ∈ F}, and an array W consisting of the results of this algorithm

for last |W| scheduled requests. We define infrastructure contribution KCi
of each CSP Ci

as KCi
=

∑
o∈OCi o.vm.CPU × o.k, that is the weighted sum of the quantities of its VM

offerings indicating the amount of IaaS capacity (hardware resources) contributed. Thus,



58 Chapter 3

Algorithm 2: Fair Request Scheduling Contract
Input: CRi, K, W

Result: Scheduled CSP: Cs

1 for Cj ∈ F do
2 \* Initialize current proportion of scheduled requests of Cj to 0 *\
3 JCj

← 0

4 for l← 1 to |W| do
5 if W[l] = Cj then
6 JCj

← JCj
+ 1

7 end

8 end

9 JCj
←

JCj

|W|

10 DCj
← JCj

− K̂Ci

11 end
12 Cs ← argmaxCi∈F(DCj

)

13 enqueue(W, Cs)

14 if |W| > K then
15 dequeue(W)

16 end
17 return Cs

each time the catalog is updated, the proportion of contributions are also changed. The

contribution proportion is thus K̂Ci
=

KCi∑
Cj∈FKCj

, for each CSP Ci.

In essence, the scheduler works similarly to a weighted fair queue [133] which en-

sures that the rate of consumer requests received by each CSP Ci is proportional to K̂Ci
.

For this purpose, the scheduling contract keeps track of a window (W) of the past sched-

uled results. We implement W as a queue containing results for past requests that is

CRi−1,CRi−2, . . . ,CRi−|W|. Here each result corresponds to some CSP to which the past

request was scheduled. The algorithm first computes the proportion of requests scheduled

to a particular CSP as JCj
and then computes the proportion deficit as DCj

. The request

CRi is then scheduled to the CSP, having the maximum deficit in its share of past scheduled

requests. Then the window W is updated by inserting the new result, and also removing the

oldest result if |W| > some threshold K.

Verifiability of the Scheduling Algorithm: CRi is obtained from the public blockchain,

and K is available in the private ledger. Finally, the past scheduled requests are obtained

from the previous results of the Fair Resource Scheduling contract in the private blockchain.

Thus, each CSP has access to all the information from the two blockchains. For verifia-



3.3 Use Case Implementation: Cloud Federation 59

bility, it must be ensured that all the CSPs act on the same version of information. With

each execution of Fair Resource Scheduling contract, the value of W is altered. Therefore,

the CSPs must know which version of W is applicable for which transaction. This is en-

sured in two different ways – order-execute and execute-order based executions of the

contracts [9].

Case (i): order-execute – The transactions are ordered first, and the consensus is achieved

on this ordering. The transactions are then executed sequentially based on the agreed or-

der, and W is updated. Thus every CSP applies the transactions in the same sequence on

W, starting from the initial version.

Case (ii): execute-order – Each transaction is first simulated on a particular version of W,

and this version number is also included in the transaction. Then the simulation result (an

updated version of W) is sent for consensus. In the case of multiple such parallel trans-

actions acting on the same version of W, only one transaction is agreed upon during the

consensus and accepted. The rest of them are rejected.

CSP1 CSP2 CSP3

Docker Swarm   Overlay Network

Flask Server

Fabric / Burrow
JS SDK

Fabric / Burrow
Peers

Multi-signature
Collector

Virtualbox
VM Manager

Geth Client and
Event Listener

Web3.js Interface

Geth Client and
Event Listener

Multi-signature
Verifier

Web3.js Interface

Web based GUI

Ropsten / Rinkeby Test Network

Consumer Client

Consumers

CollabFed
components

CSP components

Figure 3.4 CollabCloud modules and Testbed setup



60 Chapter 3

3.4 Evaluation

In order to test the feasibility and practicality of CollabFed, we have implemented a PoC

of CollabCloud decentralized cloud federation. Each component of CollabFed along with

the additional cloud federation specific functionalities are developed, and the end-to-end

system is deployed in a testbed (Figure 3.4). Since CollabFed needs one public blockchain

platform for providing the Consortium Interface, we have chosen Ethereum [4]. For the

private blockchain, we have tested with Hyperledger Fabric and Burrow platforms. The

public blockchain smart contracts are implemented using Solidity (v0.5.0) 1 lan-

guage, and they are executed on the Ethereum Virtual Machine (EVM). We have used

Truffle (https://www.trufflesuite.com/) for the development and testing

of the Ethereum contracts. Two test networks 2, Ropsten and Rinkeby are used to run

the consortium interface. Ropsten uses Proof of Work (PoW) whereas Rinkeby uses

Proof of Authority (PoA) [134] for consensus. We evaluate CollabFed, as well as the cloud-

federation functionalities from two different setups. First, we develop an in-house testbed

with three emulated CSPs over six cloud servers (each CSP having two servers). Next, to

analyze the scalability of different components of CollabFed, we perform an emulation-

based evaluation over the Mininet virtual emulation network [33].

3.4.1 Platform Setup

To test the end-to-end functionality and performance of CollabFed along with its vari-

ous components, we set up a PoC testbed of cloud federation emulating 3 CSPs partic-

ipating in the federation. Figure 3.4 shows the setup where each CSP has two cloud

servers – one 4-core Intel Core i5-4590@3.30GHz server with 8GB memory (Ubuntu

18.04, Linux Kernel 4.15) for running CollabFed services, and another 88-core Intel Xeon

Gold 6152@2.10GHz server with 256GB memory (CentOS 7.7, Linux Kernel 3.10) for

running the CSP’s usual services including VM placement and hosting the VMs. All the

services are run in Docker (https://www.docker.com/) containers, and the net-

working is established through a Docker swarm overlay network.

1https://solidity.readthedocs.io/en/v0.5.0/
2https://docs.ethhub.io/using-ethereum/test-networks/

https://www.trufflesuite.com/
https://www.docker.com/
https://solidity.readthedocs.io/en/v0.5.0/
https://docs.ethhub.io/using-ethereum/test-networks/


3.4 Evaluation 61

For implementing the CPS functionalities, we have used VirtualBox (https:

//www.virtualbox.org/) for creating VMs, and a Flask (https://flask.

palletsprojects.com/en/1.1.x/) server for accepting VM placement requests

and interfacing with VirtualBox. Since each CSP has only one emulated data center,

which is the host server itself, the placement algorithm does not affect our system’s eval-

uation. However, each CSP has its own set of supported VM specifications that it offers,

resulting in different catalogs. We use the Fair Request Scheduling contract that allocates

requests based on the proportionality of the virtual CPU (vCPU) contribution in the feder-

ation by each CSP.

Apart from the testbed, to evaluate the scalability of different components of CollabFed,

we also created a Mininet-based network topology for emulation. We created test scenarios

with several CollabCloud CSP nodes ranging from 2 to 32 and the latency between them

ranging from 50ms to 400ms to capture their performance in real-world deployments.

3.4.2 End-to-end Testbed experiments

In these experiments, we used the PoC testbed to evaluate each component’s performance

while doing end-to-end consumer request processing for VM provisioning. We used emu-

lated consumers with numbers ranging from 4 to 64 and programmed them to send parallel

requests at the same instance of time. We have evaluated the latency and overheads of

processing these requests in each CollabFed module.

Consortium Interface: Each consumer request encounters the public blockchain twice,

first when it propagates from the public blockchain to the consortium, and then in the Re-

source Response Contract, when the processed result is transferred back from the private

blockchain to the public one. Figure 3.5 shows the distribution of latency for processing

the consumer requests over the public Ethereum blockchain. The processing latency over

Ethereum test networks varies widely at different times depending upon the usage by other

Ethereum users across the globe. We have collected the data for two weeks at different

times of the day, and the same has been plotted in Figure 3.5. We observe that the PoW-

based consensus process of Ropsten test network has a higher transaction processing time

compared to the PoA-based Rinkeby network. From Figure 3.5 we can observe that the

https://www.virtualbox.org/
https://www.virtualbox.org/
https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/


62 Chapter 3

4 8 16 32 64
# parallel requests

0

25

50

75

100

La
te

nc
y 

(s
)

Ropsten
Rinkeby

Figure 3.5 Transaction commitment latency
in public blockchain indicating PoW-based
Ropsten test network has a higher trans-
action processing time compared to the
PoA-based Rinkeby network.

Use
r

Req
ues

t

Res
ource

Res
ponse

Cata
log

Man
ag

em
en

t

Cryp
toKitt

ies

Aucti
on

Cryp
tK

itt
ies

Bree
ding

0

50000

100000

150000

200000

G
as

 C
on

su
m

pt
io

n

Figure 3.6 Gas consumption of the smart
contracts of CollabFed, compared to other
popular smart contracts. CollabFed shows
acceptable gas consumption.

median time taken to commit a transaction is between 10 seconds and 40 seconds in case

of Ropsten. However, notably there are some outliers where this latency is much higher,

sometimes around 2 minutes. The reason for such variation of transaction processing la-

tency are as follows. Firstly, in spite of a steady average block time of around 13 seconds

(taken over a day), the time taken to mine a block varies from as low as 5 seconds to more

than a minute. As a result, some transactions are mined quickly, while others take a longer

time. Secondly, after submitting a transaction, it is not guaranteed to be included in the next

block that is going to be mined. Instead, often it is mined in the second block or third block

after the time of its submission, thus taking 2x or 3x the block mining time. Finally, because

of these experiments being conducted in a test network and not the main network, there the

block time was less stable, contributing to the difference in the median transaction latency.

Each contract in the public blockchain requires some transaction fees proportional to its

computational complexity or storage requirements. In Ethereum, this is measured as “Gas”.

Figure 3.6 shows the gas consumption of the smart contracts of CollabFed, along with the

cloud federation specific contracts. We observe that the Resource Provisioning contract is

of the highest complexity since it has to store the multi-signatures for each transaction and

the encrypted resource access information. To understand whether this Gas requirement

is too high or too low, we benchmark these values concerning the Gas consumption by

CryptoKitties (https://www.cryptokitties.co/) which is a common Ethereum applica-



3.4 Evaluation 63

tion, and found that they are comparable.

4 8 16 32 64
# parallel requests

0

20

40

60

80
La
te
nc
y 
(s
)

Fabric Fair Scheduling
Burrow Fair Scheduling

Figure 3.7 Fair Scheduling Latency: Fabric
vs Burrow

4 8 16 32 64
# parallel requests

2

4

6

La
te
nc

y 
(s
)

Fabric Naive Scheduling
Burrow Fair Scheduling

Figure 3.8 Fabric Static Scheduling vs
Burrow Fair Scheduling

Request Scheduling over Private Ledgers: Figure 3.7 shows the time required for

executing fair scheduling contracts in the private blockchain. We observe that the trans-

action processing time for Fabric is much higher than that of Burrow. The reason for this

result is specific to the type of processing required by the Fair Request Scheduling. The key

difference between Burrow and Fabric is the transaction execution workflow followed by

them. Fabric follows execute-order flow, while Burrow follows order-execute. Executing

first and then committing the results introduces a new problem for the type of contracts that

read and change the system’s common state, just like the Fair Request Scheduling uses a

history of the already scheduled requests at different CSPs. The reason is as follows. While

executing multiple transactions in parallel, let’s assume that they get executed on the same

current state Sc, and thus the output is based on Sc. After that, once any one of the transac-

tions is committed, the current state is changed to S ′c. This state change also might change

the output of other transactions that would be executed after it. As a result, when the other

parallelly executed transactions are processed for committing, they fail in the ordering and

validation phase since their execution results do not match with the execution result on S ′c.
Fabric does not retry to execute the failed transactions by itself, so CollabFed over Fab-

ric reschedules the failed transactions, thus increasing the latency. We refer the reader to

Chapter 2.2 for an in-depth description of different flows of transaction execution.

To validate our hypothesis regarding the source of higher overhead caused by Fabric, we

also tested with a naive scheduling contract that schedules the requests based on a static rule

depending on its ID. This contract does not depend on the current state of the blockchain.



64 Chapter 3

In Figure 3.8, we can see that the scheduling latency of Fabric has dramatically improved.

We also noticed that there are no transaction failures due to inconsistent execution results.

Moreover, we saw no such latency improvements for Burrow with such a naive scheduling

contract. It may be noted that for more parallel requests, Burrow still performs marginally

better than Fabric. Consequently, we can conclude that the choice of private blockchain

technology depends heavily on the fair scheduling contract’s business logic.

4 8 16 32 64
# parallel requests

0

200

400

La
te

nc
y 

(s
)

Figure 3.9 VM Provisioning Latency

4 8 16 32 64
# parallel requests

0.15

0.16

0.17

0.18

La
te

nc
y 

(s
)

Figure 3.10 Sign. Collection Latency

After a request is scheduled, a VM is provisioned accordingly, and the access informa-

tion is signed through collections of BLS multi-signatures. Figure 3.9 shows the distribu-

tion of the time taken for VM Provisioning. This increases with the increase in number

of parallel requests, mainly due to the limited processing capability of the hardware of our

setup. This latency is specific to the cloud federation application of CollabFed, and thus

does not count towards its performance. Figure 3.10 shows the distribution of latency for

multi-signature collection. We see that the multi-signature collection latency remains fairly

consistent.

Resource Consumption: CollabFed consumes CPU, memory, and network band-

width, which are an additional overhead to normal operations of a consortium. Figure 3.11

shows the box-plot distribution of CPU usage by CollabFed server for executing the pri-

vate blockchain transactions in Fabric and Burrow, and for multi-signature collection. We

observe that the CPU consumption is reasonably low, below 10% in most cases for all the

services. Similarly, Figure 3.12 depicts the distribution for memory requirements which

stays below 200MB.



3.4 Evaluation 65

4 8 16 32 64
# parallel requests

0

10

20

30
CP
U
 u
sa
ge
 %

Fabric
Burrow
Multi-sugnature Collector

Figure 3.11 CPU Usage

4 8 16 32 64
# parallel requests

0

100

200

300

M
em

or
y 
U
sa
ge
 (
M
B) Fabric

Burrow
Multi-signature Collector

Figure 3.12 Memory Usage

3.4.3 Mininet scalability experiments

The public blockchain platforms being open networks have been designed to be scalable,

and extensive research has been done to study their performance [5, 52]. We focus on the

scalability of the private network and the multi-signature collection. For this, we set up an

experiment with 32 emulated CSPs over a Mininet [33] topology, which forms a CollabFed

consortium. We also changed the inter-CSP network latency to emulate the CSPs’ spread

across different geographic regions.

50 100 200 400
Inter-node RTT (ms)

0

1

2

3

4

Bu
rr

ow
 T

ra
ns

ac
ti

on
La

te
nc

y 
(s

)

2 Nodes
4 Nodes
8 Nodes

16 Nodes
32 Nodes

Figure 3.13 Burrow scalability

Figure 3.13 shows the distribution of Burrow propagation contract execution and com-

mitment latency. The experiment has been done with inter-CSP latency varying in each

case, from 50ms to 400ms. We observe that the median transaction latency lies around 2.5



66 Chapter 3

50 100 200 400
Inter-node RTT (ms)

0

1

2

3

4

5

6

M
ul
ti
-s
ig
na

tu
re
 C
ol
le
ct
io
n

 L
at
en

cy
 (
s)

2 nodes
4 nodes
8 nodes

16 nodes
32 nodes

Figure 3.14 BLS scalability

seconds with 32 nodes and 400ms inter-CSP latency. Further, the increment in the transac-

tion latency due to an increase in the number of CSPs or inter-CSP network latency is not

very high, which indicates the scalability of the proposed approach.

Figure 3.14 presents the mean and the standard deviation of multi-signature aggrega-

tion latency with a varying number of nodes and inter-CSP latency values. We observe that

the mean latency is below 2 seconds for 16 SPs and about 3.5 seconds for 32 SPs. This also

indicates the scalability of the signature aggregation scheme. However, the multi-signature

collection latency can have a big impact due to the collection tree structure. To study it, we

constructed a complete M-ary communication tree with 32 SPs. Table 3.1 shows the multi-

signature collection latency for different values of M . The inter-CSP latency for this test is

kept fixed at 400ms. We can observe a sharp improvement in the latency from linear (M=1)

to binary tree (M=2) structure. The latency is more or less stable from M = 4. However,

the multi-signature combination complexity for individual CSPs increase with the value of

M . Therefore, the value of M in a real deployment can be chosen based on this trade-off.

Table 3.1 Effect of communication tree on multisig collection latency

M 1 2 4 6 8 16 31

Mean Latency (s) 29.9 5.0 3.2 2.3 2.4 3.0 2.9

Standard Deviation 1.8 0.3 0.2 0.1 0.2 0.6 1.3



3.5 Summary 67

3.5 Summary

Towards a fully trustless decentralized architecture for an electronic business consortium

providing services to consumers, in this chapter we introduce a public-private hybrid blockchain

architecture with a unified interface between the consortiums and the open network. To the

best of our knowledge, this is the first attempt to fill a critical gap in the application of

blockchain in the enterprise and business use cases. CollabFed is flexible in terms of the

choice of public and private blockchain networks; however, the performance and security

guarantees depend on the assumptions of those underlying blockchain technologies and

consensus protocols. The PoC implementation of CollabFed indicates that the system is

scalable and performant with Hyperledger and Ethereum – one of the most popular private

and public blockchain platforms, respectively.

The permissioned ledger based consortium of CollabFed provides a decentralized plat-

form for B2B interactions between the organizations. But the B2B operations might not

be limited to a single blockchain network [15]. There is a trend in the industry to create

blockchain consortiums as minimum viable ecosystems, often comprised of closely related

businesses such as trade finance [28,135], logistics [10], etc. Although the consortium en-

ables B2B interaction within the blockchain networks, these consortiums have compelling

reasons to interoperate with other consortiums as well for achieving different business

goals. As a result, inter consortium data transfer and other forms of cross-chain interactions

are required. Although an existing work [15] has tried to introduce cross-network commu-

nication for permissioned ledgers, it leaves the problem of identity exchange unaddressed

which is the centerpiece of any verifiable data transfer protocol between permissioned net-

works. We address this issue of cross network identity management in the next chapter.





Chapter 4

Decentralized
Cross-Network Identity Interoperation

The current trend in enterprise blockchain industry is to create minimum viable ecosys-

tems for business consortiums, i.e., limited business processes managed by permissioned

blockchain networks that are built on diverse distributed ledger technologies (DLTs) [9,29].

This has fragmented the wider blockchain ecosystem, producing isolated networks with

data and assets in silos [15]. But these networks have compelling reasons to interoperate

while remaining operationally independent for privacy and logistical reasons. For example,

an exported good that is financed on a trade finance network [28, 135] may be tracked on

a separate provenance network [27] or a trade logistics network [10], while the traders’

identities are attested on a shared KYC (Know Your Customer) network [136]. Such cross-

network operations should be as trustworthy as transactions within those networks. The

problem of transferring or exchanging assets across networks is well-studied, especially in

the context of permissionless networks [19–21, 83]. We focus instead on the data sharing

problem, that is, the transfer of data recorded in the ledger of one permissioned network to

the ledger of another. To prevent fraud, the information must be accompanied by proof of

veracity and provenance, as there is no guarantee that parties interested in it will be privy

to both the ledgers.

Though several schemes exist for data sharing with proof, they are typically rele-

69



70 Chapter 4

Figure 4.1 Generalized Cross-Network Data Transfer Protocol

vant for permissionless networks [137, 138], rely on intermediary infrastructure (relay

chains) [139, 140], or use API-level integration between trusted end-points. Because we

want networks to remain autonomous and interoperate directly as per need, we base our

work on the foundation laid by Abebe et al [15]. According to their model, as illustrated

in the lower half (or data plane) of Figure 4.1, a source network receiving an informa-

tion request applies an access control policy through consensus before generating data and

proof, and a destination network accepts the information after validating the proof against a

verification policy, again through consensus. This proof must reflect the consensus view of

the source network’s peers. Though the protocol is agnostic of the nature of proof and pol-

icy, the opacity of a permissioned network necessitates some form of proof-by-attestation;

i.e., the proof must consist of a quorum of network participants’ signatures attesting to the

veracity of shared data. But proofs-by-attestation rely on a network’s ability to gain some

visibility into its counterparty network, to enable its participants to know the identities

and certificate chains of the latter’s participants so signatures in proofs can be validated.

Gaining such visibility is therefore crucial to establish a trust basis for cross-network data

sharing. In this work, we separate the data requests and proof validation concerns from

identity concerns by placing them in separate planes of activity (see Figure 4.1). Further,

we replace the assumption made by Abebe et al that the networks’ participants have a pri-

ori knowledge of each others’ identities and certificates, which is impractical to guarantee,

with a generic and pluggable identity plane protocol that provides a trust basis for data

plane interoperation. In a naive implementation, credentials could be directly exchanged

via network proxies, but this is both insecure (reliance on intermediaries) and unsustain-



4.1 Decentralized Group Identity Management 71

able (discovering and exchanging credentials on the fly). Our primary contribution in this

chapter is the design of a secure distributed identity management infrastructure and set of

protocols linking permissioned networks and laying the basis for blockchain interoperation.

To build such infrastructure, we rely on the fact that enterprise blockchain networks

are created by mutual agreement among existing real-world organizations possessing dig-

ital identities, though their network affiliations are not well-attested outside the network

consortiums. We handle heterogeneity challenges in sharing and proving identity (creden-

tial formats, digital signature algorithms, sharing policies, identity providers) as well as

privacy constraints (an organization may wish to reveal its network affiliation for cross-

network data sharing while keeping its other attributes and affiliations secret). Our in-

frastructure enables networks to dynamically discover and sync each others’ membership

lists and verify the pre-existing identities of participant organizations without mandating

a single centralized identity and validation registry (which would undermine the princi-

ple of decentralization and constrain the autonomy of interoperating networks). Dynamic

changes in network memberships are handled, avoiding situations where non-participants

or ex-participants can claim to be present participants of a network (which would result in

invalid proofs of data). Finally, our system is agnostic of the DLT on which a network is

built (structure, consensus protocol, identity issuance, cryptographic mechanisms).

In Section 4.1, we elaborate on the challenges and requirements while making the case

for building our solution on the open frameworks like decentralized identifiers, verifiable

credentials, and DLT-based identity registries. Our solution, built on Hyperledger Indy [34]

and Aries [35], with its building blocks, architecture, and protocols, are described in Sec-

tion 5.2, and a proof-of-concept implementation for Hyperledger Fabric [9] networks is

presented in Section 5.4. We analyze our system in Section 4.4 before summarizing the

findings in Section 6.7.

4.1 Decentralized Group Identity Management

An identity plane protocol involves distributed management of group identities. This is

because a permissioned blockchain network is a collective rather than a unitary entity, de-



72 Chapter 4

riving its identity from its participants (typically organizations), who may join or leave the

network at any time. For privacy and security, such networks are open to outsiders only

through invitation, and they manage identities internally in diverse ways, making cross-

network identity management a challenge. For example, in a Hyperledger Fabric network,

each participating organization runs one or more Membership Service Providers (MSPs) to

issue identities and certificates to its peers and clients [9, 141]. Whereas in a Corda [29]

network, identity is managed through a hierarchy of certificate authorities (CAs), from a

single root CA to one or more doormen CAs down to individual node CAs.

Bridging the identity gap between networks so that they can share data and validate

proofs, therefore requires cross-network identity management. This can be done in dif-

ferent ways, but if we wish to let the networks remain autonomous, avoid dependence on

centralized identity providers, and preserve blockchain tenets of consensus and distributed

trust, we must overcome several technical challenges:

• Platform heterogeneity: networks built on different DLTs have different structures

and different procedures for transaction commitment and consensus.

• Identity management heterogeneity: DLTs have diverse mechanisms for identity

management and use diverse cryptographic algorithms.

• Lack of common identity infrastructure: external identity providers for network’s

participants (members), who may serve as a common root of trust, are themselves

diverse (i.e, non-standardized), and there is also no guarantee that two networks will

have a common set of identity providers to vouch for the members of both.

• Privacy: participants must be required to share only the bare minimum information

necessary for interoperation.

• Security: outsiders and ex-members should not be able to claim that they belong to

a given network; i.e., the integrity of network membership should be guaranteed.

• Consensus on identity: registering the identity of a foreign network’s member or-

ganization in one’s ledger creates a shared truth for a network and therefore must be

governed through its consensus mechanism.



4.1 Decentralized Group Identity Management 73

To address these challenges, and knowing both the nature of permissioned networks and

what technologies exist for distributed identity management, we can derive certain design

requirements for our solution:

Decoupling Participants’ Identities from Network: Identities created within permis-

sioned blockchain networks, e.g. Fabric root certificates, are unknown outside network

boundaries. Since interoperation requires identities to be shared and validated externally,

and to avoid creating a central authority or spokesperson, identities ought to be indepen-

dently verifiable by external entities while remaining under the participants’ control. This

necessitates the decoupling of participants’ identities from the networks they belong to.

Fortunately, we can rely on the self-sovereign identity (SSI) concept [25, 79], which allows

an entity to control/manage its identity and prove properties about itself while retaining

independence from any centralized registry/provider.

Decentralized Identity Registries: To complement SSI (as a means of decoupling), there

must exist external registries to facilitate the resolution of network participants’ decentral-

ized identities [25] and the issuance, validation, update, and deactivation of credentials.

To aid in mapping SSI to network-specific identity, such registries must maintain publicly

accessible credential structures and validation information on behalf of one or more trusted

identity-providing or credentialing authorities. Several Decentralized Identifier (DID) reg-

istries exist [142], but our use cases ideally require those that are not governed by central-

ized authorities.

Maintaining Network Membership Integrity: At any given instant, a network’s mem-

bership list must be unambiguously available to a counterparty network in an interoperation

session, and any changes to membership (joins and leaves) must be communicated using a

trustworthy process. Incorrect membership information, or worse, malicious outsiders and

ex-members pretending to belong to a network, will corrupt a data-sharing procedure that

relies on proof-by-attestation, because a proof consumer may mistakenly accept an out-of-

date (or fake) set of identities and signatures. Our solution must ensure that the membership

information can be validated though consensus in the receiving network at any given in-

stant.

Trust Anchors to Discover and Certify Network Consortiums: Though a permissioned

network is a voluntary consortium of independent members, once created, it acquires a life

of its own and remains wedded to its identity even if most of the original participants leave.

Hence, for a newly-formed network, it is more straightforward to discover its identity and



74 Chapter 4

subsequently discover its membership rather than deal with the chicken-and-egg problem of

extrapolating a network identity from a group of participants’ identities. For discovery, we

must rely on reputed trust anchors that may either directly represent the consortium or serve

as an authoritative reference for it. Examples: Being well-known stakeholders, IBM or

Walmart could represent (anchor) the IBM Food Trust Network [27], whereas Maersk could

represent TradeLens [10]. Such anchors can be implemented with different levels of decen-

tralization; they could be single entities or sets of corroborating entities representing differ-

ent network participants; they could run their own organizations or belong to shared identity

registries, maintaining credentials in shared ledgers. Ultimately, the trust anchor(s) should

represent the collective rather than a single network participant to ensure decentralization.

Compatibility with Networks’ Identity Management Systems: No identity plane proto-

col we develop ought to require any internal modifications to underlying blockchain plat-

forms. Though these networks may have to implement additional adapters to manage het-

erogeneity for interoperation purposes, the internal transaction commitment and consensus

processes, which rely on existing certification and cryptographic mechanisms, must be al-

lowed to proceed unchanged. Therefore, our solution must be simultaneously compatible

with existing permissioned DLT identity management systems and agnostic of their specific

implementations.

4.2 Solution

We now present a decentralized identity management solution to fulfill the requirements

stated in Section 4.1, and whose development was guided by the following design princi-

ples:

• The solution should not be tied to, or only applicable for, a particular DLT.

• Networks and their participants should be free to choose identity registries and providers

(or use their existing ones).

• Networks must retain their autonomy while gaining the ability to interoperate uni-

versally.



4.2 Solution 75

Figure 4.2 Architecture to enable identity plane exchanges

• No change should be required in a network’s regular operation, nor should it be bur-

dened with onerous additional configurations.

4.2.1 Building Blocks

We rely on existing decentralized identity management concepts and tools to serve as build-

ing blocks for our solution.

• Decentralized Identifiers (DIDs) is a W3C draft [25] for self-sovereign identity

(SSI). A DID is a URI that resolves to a DID Document that contains information

about its subject like aliases and pseudonymns. It can contain public keys to authenti-

cate the subject’s signature and service endpoints for communication with the subject

to obtain verifiable credentials (see further below). We assume each network partic-

ipant possesses a DID, decoupling its external identity from its network affiliation.

• Verifiable Credentials (VC) is W3C specification on cryptographic digital creden-

tials based on DIDs, used to certify claims about their holders [1], who can then

prove their claims to third parties using Verifiable Presentations (VP).



76 Chapter 4

• Distributed Verifiable Data Registry (VDR) is a data registry that maintains iden-

tity records in a distributed ledger. Examples are Hyperledger Indy [34] and Side-

tree [143]. Indy, built on a blockchain network, maintains DID records through con-

sensus. (Note: our design will accommodate centralized DID registries too but we

recommend Indy-like networks for optimal levels of decentralization.)

• Identity and Credential Messaging in a platform-neutral and interoperable protocol

is required for peer-to-peer exchange of DID records, VCs, and VPs among issuers,

subjects and verifiers. An example (though our design can accommodate any equiv-

alent) is the DIDComm protocol in Hyperledger Aries [35], which facilitates such

exchanges with support for encryption using keys and service endpoints stored in

registry DID records.

We refer the reader to Chapter 2.3 for a more detailed discussion on DID, VC, VDR,

and DIDComm. In the following subsection we describe the decentralized identity plane

architecture.

4.2.2 Architecture

Two sets of modules are required to realize an identity plane protocol (Figure 4.2) - (i) a set

of networks separate from the interoperating networks, collectively called Distributed Iden-

tity Infrastructure, in which identity and credential records are maintained, and (ii) a set of

agents within an interoperating network, collectively called Network Identity Managers,

each acting on behalf of a participant, syncing and validating identities across network

boundaries, and recording foreign identities on the local ledger.

Distributed Identity Infrastructure

This is a cloud of what we term Interoperation Identity Networks (IINs), which collec-

tively provide a common root of trust for networks to sync identities and certificates. Each

IIN consists of a distributed VDR, which, without loss of generality, is built on a public per-

missioned ledger allowing open queries but restricting writes to designated trust anchors



4.2 Solution 77

(see below). The VDR ledger, shared and maintained by the IIN’s pool of nodes through

consensus [34, 66], also records verifiable credentials’ schemas, authentication keys for

credentials’ attributes, and revocation lists. Each IIN in our infrastructure cloud enables

trustworthy validation of certain networks’ memberships by maintaining DID records for

their participants and schemas and keys for issuing and verifying credentials.

Trust Anchors: An IIN does not have a centralized source of trust. Instead, a trust basis

is collectively created by trust anchors (TAs), entities that possess ledger write privileges,

allowing them to issue DIDs to entities and maintain DID records on the IIN ledger, and

further, issue VCs to DID owners. Some TAs are bootstrapped into an IIN, but any other

DID owner can be assigned anchor privileges by an existing anchor too, thereby creating

a trust hierarchy. Each TA in an IIN vouches for certain network members’ real-world

identities and attests to their participation (membership) in interoperating networks. A TA,

in effect, is like a conventional identity provider but in our architecture, maintains identity

records in a shared ledger with other TAs.

IIN TAs come in two varieties. Organization identity validators (OINs), who already

possess well-known real-world identities, are responsible for associating a network partic-

ipant’s DID with its real-world identity on an IIN ledger (through consensus). (Note: The

W3C draft proposal does not mandate a DID’s automatic association with a real-world or

legal identity upon creation [25,144], so we need OINs to make such associations explicit.)

The presence of a DID record for a network participant with such an association implies

that its identity is vouched for by one or more TAs of that IIN. Participant membership
validators (PMVs) are responsible for validating the membership of a DID owner in a

given permissioned network. Enterprise blockchain networks formed by mutual agreement

among its participants have no single central authority that can certify the network’s struc-

ture or its members. Therefore, proving participation of an organization requires attestation

by one or more PMVs, which, like OINs, are reputed in industry or well-known as con-

sortia representatives. For example, either IBM or Walmart, both reputed entities, could

act as validators for the membership of the IBM Food Trust [27] network, in whose launch

and governance they both played key parts. These trust anchors issue verifiable credentials

to participants attesting their network memberships and also revoke them when organiza-

tions leave networks. An organization may hold multiple VCs attesting its memberships in

multiple networks. In a cross-network data sharing session, it can construct a VP proving



78 Chapter 4

its membership in either counterparty network without revealing its memberships in other

networks, thus ensuring privacy [1].

IIN Artifacts: the following are maintained on the ledger:

• Real-world DIDs attesting the real-world identity of an organization (network partic-

ipant).

• Membership VC schema and authentication key - A membership VC for an organi-

zation proves its participation in a given network. The VC contains its DID and the

name/identity of a network it is a member of as attributes (claims). This Membership

VC schema is recorded on the IIN ledger, and every organization’s VC must adhere to

it, though different VCs may use different encodings and cryptographic algorithms.

The public key used for authentication of this VC is also recorded on the ledger and

used to validate membership claims made by the organization using a VP.

• Memberlist VC schema and authentication key - A memberlist VC consists of a

name/identifier for a given network and a list of the network’s participants’ DIDs

as schema attributes. Memberlist VCs are issued by PMVs and used by interoperat-

ing networks to fetch each others’ list of participants, after which each participant’s

membership VC can be fetched and validated.

• Revocation Registries - When a blockchain network’s member leaves, the Member-

ship VC indicating its affiliation with the network must be revoked. We use crypto-

graphic accumulators [145] as revocation registries, allowing membership presence

checks without revealing the entire list of members. Each PMV registers a separate

revocation registry on the IIN ledger. This registry is updated when a VC is revoked,

and is also looked up by entities validating a verifiable presentation made by a Mem-

bership VC holder.

Network Identity Managers

These components lie within the trust boundary of a permissioned network, one or more

acting on behalf of each participating organization. A network identity manager is respon-



4.2 Solution 79

sible for identity-syncing, i.e., (i) presenting its own identity and membership credentials

to a foreign network, and (ii) correspondingly validating the membership credentials of a

foreign network’s members, and fetching and storing their certificates in the local ledger for

data plane interoperation. We will henceforth refer to these managers as IIN Agents as they

rely on IINs and their trust anchors for discovery and connections with foreign networks.

IIN Agent: This is responsible for registering the real-world DID of a network partic-

ipant on an IIN and obtaining a Membership VCs from a TA of that IIN. It communicates

with IIN Agents of foreign network participants using a confidential web-based channel

to prove its own identity and validate their identity and membership claims using VPs.

Furthermore, IIN Agents exchange their network-issued identity and certificates using self-

signed VPs that can be verified against their real-world DID. Once verified, they configure

these certificates in their network’s shared ledger through consensus. This maps an orga-

nization’s decoupled SSI (real-world DID) to its network-issued identity, which ultimately

makes proof verification possible in the data plane for interoperation.

Ledger Artifacts: Each permissioned network maintains the following policy config-

uration for identity-sharing, trust, and interoperation:

• Interoperation network list: list of foreign networks with which the local network is

willing to interoperate.

• Trust list: IINs and specific TAs within that are trusted for identity and membership

validation of foreign networks.

• Foreign network identities: identities of organizations participating in foreign net-

works and their network-issued credentials (typically certificate chains).

4.2.3 Identity Exchange Protocol

Figure 4.7 illustrates the end-to-end flow in our canonical identity plane protocol to dis-

cover and sync identity and credentials across an example pair of networks (Network A

and Network B) and a single IIN. In this example, Org1 and Org2 in Network A are learn-

ing about the identity and membership of Org3 in Network B so that the networks can



80 Chapter 4

Figure 4.3 Phase (A) of Identity Exchange Protocol - Configure DID and Membership VC

share ledger data with each other. Note that by repeating these steps, identity information

of any of the other organizations in Network B can be discovered, fetched, validated and

configured in Network A. We describe the protocol in four phases (A) Configure DID and

Membership VC of the organization whose identity would be configured in the foreign

network - Figure 4.3, (B) Validate DID and Membership of foreign network organization

- Figure 4.4, (C) Fetch blockchain network specific identity information - Figure 4.5 (D)

Update identity information in ledger - Figure 4.6.

Phase (A). Configure DID and Membership VC: Org3, that is the organization whose

identity and membership needs to be configured by the foreign network first creates a DID

and requests an Organization Identity Validator (OIN) to attest to its identity and register

it as a real-world DID (Figure 4.3). Once this DID is registered in the IIN, Org3 must get

a Membership VC issued to it by a Participant Membership Validator (PMV) of that IIN.

The PMV validates the request using some out-of-band validation procedure, issues the

VC, and updates the revocation registry accordingly.

Phase (B). Validate DID and Membership: Before starting the validation process, Org1

and Org2 need to know who the participants of Network B are. Org1 requests a Memberlist

VC from the PMV associated with Network B, which returns a self-signed VP. After Net-

work B’s participants’ real-world DIDs are known, Org1 resolves Org3’s DID Document

from the IIN ledger. This DID Document contains the service endpoint which is then used

by Org1 to request Membership VP from Org3. Org1 then validates the VP received using

the Membership VC schema, authentication key, and the revocation list, all fetched from



4.2 Solution 81

Figure 4.4 Phase (B) of Identity Exchange Protocol - Validate DID and membership of
foreign network organization

Figure 4.5 Phase (C) of Identity Exchange Protocol - Fetch blockchain network-issued
identity information

the IIN ledger (see Figure 4.4).

Phase (C). Fetch Blockchain Identity Information: At the end of Phase (B), Org1 has

already validated the DID and Membership credentials of Org3. But the corresponding

blockchain network specific identity and certificates of Org3 are required for interopera-

tion in the data plane. So Org1 requests Org3 for its network-issued identity and certifi-

cates, which Org3 returns in the form of a self-signed VP that is validated against Org3’s

real-world DID’s authentication key. (Figure 4.5)

Phase (D). Update Identity in the Ledger: Though Org1 now has verified the identities of

Org3, it cannot record it on Network A’s ledger without a consensus among the network’s

participants. Therefore, Org2 independently carries out steps (B) and (C) above and en-

dorses Org1’s request to commit Org3’s identity to the blockchain (using a smart contract



82 Chapter 4

Figure 4.6 Phase (D) of Identity Exchange Protocol - Update identity in the ledger

transaction). Thus, no single participant of a network can unilaterally manipulate the local

record of the identity of a foreign network’s participant (Figure 4.6).

The end-to-end flow of the Identity Exchange Protocol, from phases A to D, are de-

picted in Figure 4.7.

4.3 Use Case for Hyperledger Fabric

We demonstrate a proof-of-concept implementation of our protocol by augmenting the

two-network use case in Abebe et al [15]. We started with the already developed scaled-

down versions of the trade logistics network, TradeLens1 [10], and the trade finance net-

work, We.Trade [135], namely Simplified TradeLens (STL) and Simplified We.Trade (SWT)

respectively. Here, each network runs Hyperledger Fabric peers, membership service

providers (MSP), an ordering service, and application (client-layer) components, in Docker

containers. Each network was equipped with a relay and two system contracts: Config-

uration Management and Data Acceptance Chaincode (CMDAC) and Exposure Control

Chaincode (ECC).

STL consists of a Seller and a Carrier organization, as illustrated in Figure 4.8 each

running a peer and a CA (serving as MSP). Consignments are created and dispatched in

1(Discontinued at the beginning of the year 2023)



4.3 Use Case for Hyperledger Fabric 83

Figure 4.7 End-to-end Identity Exchange Protocol



84 Chapter 4

 

 

 

 

SELLER

BUYER

BUYER’S BANK

SELLER’S BANK

CARRIER

Simplified 
We.Trade

Simplified 
TradeLens

1.Purchase Order
(Off-Blockchain)

2. Request 
L/C 

3. Propose 
L/C 

4. Approve 
L/C 

5. Book Consignment 

10. Dispatch consignment

8. Upload 
B/L

7. Create Consignment 

11. Obtain Bill of Lading (Inter-Blockchain) 

10. Request 
Payment

9. Accept B/L

6. Obtain Letter of Credit (Inter-Blockchain) 

NODE POOL

SHARED LEDGER

IBM (Trust Anchor) Maersk (Trust Anchor)

IIN

Figure 4.8 Simplified Cross-Network Trade Use Case

the workflow, with a bill of lading [16] (B/L) recorded on ledger. SWT consists of a Seller

and a Buyer organization, each with 2 peers and CAs, running a letter of credit [146] (L/C)

management workflow. SWT application clients include the same Seller that is a member

of STL, a Buyer, and the Seller’s and Buyer’s banks. The interoperation steps are: (1) trans-

fer of L/C from SWT to STL as a prerequisite for consignment creation and (2) transfer of

B/L from STL to SWT for payment obligation enforcement.

4.3.1 Distributed Identity Infrastructure

We used Hyperledger Indy to implement an IIN with trust anchors. Though other DID

registries and DID providers exist, Indy is the most mature and offers all the features de-

scribed in Section 5.2. Indy maintains DID records on a public permissioned ledger shared

by a pool of nodes running a consensus protocol [34,66]. Trust anchors called stewards are

bootstrapped into an Indy network within the genesis block, and these stewards can assign

trust anchor privileges to other DID owners too: Indy supports TAs of the OIN and PMV

categories out-of-the-box. DID records contain service endpoints, credential schemas,

and authentication public keys (called credential definitions). Real-world DIDs are called

verinynms (anonymous pseudonyms are also supported), and a TA (OIN) can register a

verinym on the Indy ledger using a special NYM transaction. TAs (including stewards)

and IIN Agents (see below) are implemented using the companion Hyperledger Aries [35]

framework, which enables confidential peer-to-peer communications among Agents and



4.3 Use Case for Hyperledger Fabric 85

TAs.

For proof-of-concept, we deployed a single IIN: an Indy network bootstrapped with

4 independent Sovrin stewards [147]. Two trust anchors were enrolled in the IIN by the

stewards: one in the name of IBM to represent the SWT consortium and another in the

name of Maersk to represent STL (see Figure 4.8). (Note that IBM and Maersk are ini-

tiators and major players in the real We.Trade and TradeLens networks respectively, and

are therefore realistic sources of trust.) A single IIN with two trust anchors is sufficient to

demonstrate operational mechanics in a proof-of-concept; in a production implementation,

we will likely have more diversity but the mechanisms used will be identical to what we

demonstrate here. The SWT Seller and Buyer register verinyms with, and obtain Member-

ship VCs from, the IBM anchor in the IIN; likewise, the STL Seller and Carrier register

and obtain theirs from the Maersk anchor.

4.3.2 Fabric Network Organizations and Identity Providers

In a Fabric network, identity is independently managed within an organization by one or

more membership service providers (MSPs) [141], implemented as a set of Fabric CA

Servers [148] (CA: Certificate Authority). Multiple root and intermediate CAs can exist

within an organization, creating trust chains. Each peer or transaction-submitting client

enrolls with an MSP (one of the Fabric CA servers) in their organization to obtain a unique

identity and X.509 certificates for transaction signing. Organizations are then linked to-

gether on a channel when a configuration block containing their respective MSPs’ root and

intermediate CA certificates is appended to that channel’s blockchain.

Every valid transaction in a block must carry a set of peer signatures that satisfies an

endorsement policy. Likewise, in a data-sharing instance, any data shared with an external

network can only be deemed valid if it carries a set of peer signatures that satisfies a ver-

ification policy. But proof verification (i.e., signature validation) requires the destination

network to possess the source network’s organization list and the certificates of its MSPs.

Below we show how IIN Agents embedded within a Fabric network enable proof verifica-

tion by fetching certificates and creating identity records on the ledger using the CMDAC

contract.



86 Chapter 4

Figure 4.9 IIN Components and Connections for Fabric

4.3.3 IIN Agents within a Fabric Network

An IIN Agent represents an organization outside its network, and hence is designed to be

an extension of that organization’s MSP. An organization typically uses a single MSP in

production, but if multiple MSPs are used, representing organizational units, we can use

a different Agents for each. Logically, the Agent functionality ought to be performed by

a Fabric CA Server. Rather than modifying the Fabric CA code, for implementation and

deployment convenience, our IIN Agent is built as a decoupled service exposing an API

for communication with IINs (Indy networks), IIN Agents of other local network organiza-

tions, and IIN Agents of foreign networks’ organizations (see Figure 4.9). The IIN Agent

also has client privileges and can submit transactions to the CMDAC.

An IIN Agent is composed of three modules. An Indy Agent built using with indy-sdk

[149] is used to connect to an IIN’s Indy pool and query DID/credential information. An

Aries Agent, implemented using ACA-Py [150], is used to communicate with IIN trust

anchors for verinym, VC, and VP requests. It uses DID service endpoints and credential

definitions (authentication keys) for encrypted communication. While handling VCs and

VPs, the Aries Agent calls the Indy Agent to fetch/update credential schema and definitions,

and revocation lists. The Controller, implemented using Node.js orchestrates the identity

initialization, exchange and validation flow as described in Section 4.2.3. It is responsible



4.3 Use Case for Hyperledger Fabric 87

for fetching its associated MSP’s latest root and intermediate certificates for sharing with

foreign networks. These three modules run within a single Docker container. Lastly, an IIN

Fabric Client application built on the Fabric SDK [151] updates foreign networks’ iden-

tities and certificates on the channel ledger using CMDAC transactions. This app, running

within its own container, takes transaction requests from the Controller and executes an ap-

plication level signature collection flow (see Section 4.3.4) before invoking the CMDAC.

4.3.4 Protocol: Syncing Foreign Identities through Consensus

Our protocol implementation follows the steps described in Section 4.2.3 verbatim except

for the final step in which a foreign network’s identities are recorded onto the local ledger.

This step requires DLT-specific mechanisms, and we will show how they were implemented

in Fabric. As an example, we consider the scenario where SWT is trying to fetch and sync

the certificates of the Carrier organization in STL.

Recording the STL Carrier’s certificates on the ledger creates a shared truth for the en-

tire SWT network, enabling its peers to refer to those certificates in a data transfer session,

either for access control or proof verification. Allowing the CMDAC to directly query IINs

or foreign networks’ agents to fetch these certificates would create a non-determinism haz-

ard. Therefore, we use an application-level flow involving IIN Agents for deterministic

invocation of CMDAC.

The SWT Buyer IIN Agent initiates this flow by validating the STL Carrier’s Member-

ship VC with the IIN, and subsequently fetches the Carrier’s certificates from the Carrier’s

IIN Agent (whose service endpoint is part of the Carrier’s DID record). The Buyer IIN

Agent then sends these certificates to its Fabric Client app, which then prepares a signature

collection request, and sends it to the Fabric Client of the SWT Seller IIN Fabric Client app.

The latter validates the Carrier’s certificates after consultation with their own IIN Agents

(who have presumably fetched those certificates too), and then counter-signs the request on

behalf of its organization. The Buyer aggregates the responses (only one here) and submits

it as input in a CMDAC transaction. The chaincode checks for the presence of valid signa-

tures from every SWT organization (here: Buyer and Seller) before approving the update

of the STL Carrier’s identity state on the ledger. Note that this update is idempotent, and



88 Chapter 4

can be carried out concurrently by the IIN Agents of both Buyer and Seller. Also, if the

Buyer’s and Seller’s IIN Agents’ copies of Carrier certificates are not in sync, the signature

collection flow will fail and must be retried.

This protocol replaces the naive implementation in Abebe et al [15] where organiza-

tional identities and root and intermediate certificates were fetched out-of-band manually.

The identity plane exchange we have demonstrated makes the process more secure and

consensus-based. Further, any changes in organizational memberships or certificate be-

longing to an organizations can be determined and synced automatically through periodic

queries made to the IIN registry (for membership and revocation lists) or whenever a proof

validation fails because of expired certificates.

4.4 Analysis

We now analyse our system’s ease of use and extensibility, and discuss its limitations with

a view to future improvements.

4.4.1 Generality and Flexibility

Our design consists of two distinct sets of components: 1) Distributed Identity Infrastruc-

ture shared by interoperating networks but existing outside them, namely the IINs, and 2)

Network Identity Managers components that lie within networks, namely the IIN Agents.

IINs are built using state-of-the-art industry standards (Indy, DID, VC), though the specifi-

cation is independent of a specific technology. IIN Agents are DLT-specific and decentral-

ized within a network, lying within the scope of a network’s participant/organization. In

fact, different organizations may implement their own versions of IIN Agents and replace

them independently; an Agent just needs to expose the API we have specified earlier in this

chapter.



4.4 Analysis 89

4.4.2 Security

We evaluate the security of our protocol against the standard CIA triad model [152].

Confidentiality: The DIDs of network participants are themselves public by necessity,

as the DID Registry (IIN) is a public permissioned network. But a DID by itself only

reveals the existence of an organization that participates in a network without revealing

anything else about that organization, like membership information, which are known only

to identity owners and IIN trust anchors. Also, the intra-network certificates are shared

point-to-point among IIN Agents on a need basis and are thus kept confidential from ev-

eryone outside the interoperating networks.

Integrity: Identities are registered in an IIN using a fault-tolerant consensus protocol

(Indy typically uses RBFT [66]), thereby ensuring a high level of integrity. Trust anchors

maintaining Memberlist VCs are assumed to have reputations and are trusted by organi-

zations belonging to a consortium; further, identities and VCs are attested by signatures

using keys registered in IINs. Integrity violations are therefore unlikely but can be easily

detected, allowing organizations to select more trustworthy anchors.

Availability: The availability of identity records depends on the size of the IIN; the

more the number of nodes in an Indy pool, the higher the availability. An IIN Agent or

an IIN Trust Anchor by itself can be a point of failure, but this can be mitigated by adding

redundancy.

4.4.3 Privacy

Our proposed identity plane deals with issuing, presenting, and verifying digital identities

and other credentials of organizations. Naturally, the implication of using the Interoperation

Identity Network (IIN) infrastructure on privacy is an important consideration. In our pro-

posed IINs, only decentralized identifiers (DID) are stored in the verifiable data registries.

These DIDs by themselves are indistinguishable from any random identifier and does not



90 Chapter 4

contain any personal or sensitive information. The validation of credentials such as identity

and membership of organizations are instead carried out through the Verifiable Credential

(VC) protocols. The W3C recommended Verifiable Credentials specification has the goal

of providing cryptographically secure, privacy respecting, and machine-verifiable digital

credentials [1]. A verifiable credential issued by an issuer is only available to its holder,

and only the holder is capable of presenting it to any verifier through a Verifiable Presen-

tation (VP). A VC attests to certain claims that are typically about the its holder. However,

this VC is never stored as an artifact in the IIN.

A claim about an organization or the VP proving that claim is communicated to a ver-

ifier through a device-to-device (D2D) communication channel that is typically end-to-end

encrypted. Even then, this process of verifiable presentation has different privacy pre-

serving implementations. One such implementation in Hyperledger Indy [34] uses zero-

knowledge proofs to present credentials without revealing the exact claim. Instead, the VC

is used to prove a predicate that is provided by the verifier. One example of such claim

is age, where without revealing the actual age, a presenter can prove that its age is more

than 18 years through a zero-knowledge proof implementation of VP. As a result, the IIN

infrastructure in no occasion obtains or saves any sensitive claim information of the par-

ticipants. Moreover, through the use of zero-knowledge proofs, sharing sensitive claims

with the verifier can also be avoided. Therefore, our proposed identity plane infrastructure

respects the right to forget, which is an important property of a privacy preserving system.

Taking one step further in this direction, we consider that revealing the trust anchors be-

tween the two parties that are trying to validate each other claims can also lead to a breach

of privacy and leak of sensitive information. In practice, trust anchors are often well-known

organizations such as government bodies, large companies, influential non-government or-

ganizations, etc. Having such organizations as trust anchors indicate some kind of positive

association with them. As a result, privacy-preserving negotiation of such trust anchors is

required. We discuss this problem in the next chapter (Chapter 5) and propose solutions for

the same.



4.4 Analysis 91

4.4.4 Ease of Extensibility

Network Identity Managers

An IIN Agent runs as part of a network, but only portions of it needs to have a DLT-specific

implemenation. Examining the protocol steps in Section 4.2.3, we see that step A involves

the Agent communicating with IINs and Trust Anchors using a standard API. Similarly,

steps B and C involves communication between IIN Agents across network boundaries,

again using a standard interface. Only Step D, which involves updating the local ledger

via a smart contract transaction must be DLT-specific. Hence, an IIN Agent can be mostly

built using off-the-shelf components. The transaction submission component must be DLT-

specific, as was the IIN Fabric Client described in Section 5.4. The equivalent of this in

Corda would be a CorDapp [153] and in Hyperledger Besu would be a Dapp [154].

Distributed Identity Infrastructure

Though our IINs are implemented using Indy and IIN trust anchors using Aries, their speci-

fications and interfaces are based on W3C standards for DIDs and VCs and VPs. Therefore,

they can easily be ported to other verifiable data registries that follow the same standard

(e.g. Sidetree [143]).

4.4.5 Possible Technical Improvements

A trust anchor representing a consortium or unilaterally issuing real-world DIDs to orga-

nizations is the only centralized component in our implementation. But further decentral-

ization is possible by requiring more than one TA to vouch for a network participant; e.g.,

using a smart contract in the IIN. Collaborative models, where TAs (e.g. representing Fab-

ric MSPs) corroborate each other using signatures can also enhance safety and liveness of

identity plane protocols.

Decoupling of network participants identities from their IIN identities presents another



92 Chapter 4

challenge: syncing the two sets to ensure that networks possess up-to-date info for data

plane operations. In general, this only affects liveness and not safety, because proof veri-

fication failures can be handled by re-synchronizing identities using strategies like polling

to event triggers. While polling may be slightly inefficient from a communication stand-

point, it provides a higher level of assurance (depending on the polling interval). Additional

watchdogs may be needed to handle all cases, in case of events, in both the identity and

data planes.

4.5 Discussion on Real-World Deployment

In this chapter, our objective is to address the technical gap present in blockchain iden-

tity management systems and membership protocols of permissioned blockchains, which

poses a significant challenge to achieving seamless interoperation across heterogeneous

blockchain networks. Notably, we observe that enterprise blockchain networks are estab-

lished through mutual agreements among real-world organizations, including companies,

institutions, government bodies, and non-governmental organizations. These organizations

possess their distinct legal identities, which are bestowed upon them by the respective

“state”, that is governmental authorities. These identities might manifest in the form of

certificates of incorporation, tax identification numbers, employer identification numbers,

and similar credentials. By relying on these state-provided credentials, the organizations

establish a consortium with legally binding terms, thereby constituting a permissioned

blockchain network. Moreover, to establish the interoperation process, two or more con-

sortiums reach an agreement to collaborate in terms of data and digital asset transfers, facil-

itating communication and cooperation between otherwise isolated permissioned ledgers.

The challenge arises in translating the aforementioned offline decisions and agreements

into the digital ecosystem of interoperating blockchain networks. Concretely, three aspects

of offline legal documents need digital representation - (i) the identifier of an organization,

(ii) the legal identity or real-world identity of an organization, and (iii) digital credentials

representing the claims and attestations to those claims. At present, without any distributed



4.5 Discussion on Real-World Deployment 93

identity infrastructure, the process of forming a blockchain network, and more so the pro-

cess of establishing interoperability between two networks is entirely a manual process

where all the identifiers, identity, and credentials have to be manually configured into dif-

ferent ledgers while conforming to their heterogeneous representations and protocols.

Through our proposed distributed identity infrastructure (Figure 4.2), we provide a ho-

mogeneous and unified, yet decentralized platform to issue, present, validate and represent

digital identifiers and credentials including identities. The Interoperation Identity Networks

(IINs) are collections of trust anchors which are identity and other credential issuers, along

with the necessary infrastructure including a verifiable data registry for maintaining the

digital identifiers. In practice, the offline legal identities, credentials, agreements and terms

are to be translated to their digitial representation in the IINs. This process of digitiz-

ing credentials would however not be plausible without the IIN architecture, since every

blockchain system, as well as other digital systems have their own heterogeneous represen-

tations, protocols, and algorithms for identity, membership, and credentials. As a result,

our proposed identity plane acts as a bridge between the legal real-world identities and cre-

dentials to the digital ledgers. More importantly, the IIN infrastructure does not rely on any

central authority to maintain the credential and identity assets, instead it is realized through

distributed ledger based registry, decentralized identifier (DID) and verifiable credential

(VC) protocols.

Organization identity validators: In practice, the organization identity validators (OIN)

in most cases are the government bodies. However, large enterprises are often multi-

national entities that are registered in several countries. As a result, they have multiple

identifiers and identity credentials which often differ from country to country. Through the

DID and VC specifications used in the IIN, such multi-national entities can create a sin-

gle identifier, that is a single DID. The different government bodies of different countries

then may issue separate verifiable credentials attesting to the claims of the country-specific

identifiers, as well as country-specific identities such as subsidiaries. During identity in-

teroperation, a counter-party organization trying to validate an identity may rely on the

trust anchor that it trusts. Such trust anchor may be the specific country’s government that

both organizations are registered in. As a result, the identity plane with the help of the IIN

infrastructure forms a trust basis between organizations having multiple same or different

legal identity providers. Moreover, the single DID provides a unique digital identifier to



94 Chapter 4

the organization which is agnostic of the different legal identity and credential providers.

Participant membership validators: As mentioned earlier, permissioned consortium block-

chains are formed through mutual agreements among real-world legally registered organi-

zations. Although the deliberations leading to such agreement often takes place “offline”,

the outcome of the agreement is a consensus on the structure of the network along with the

members included as participants. Thus, after network formation, each participant issues

a verifiable credential to the other participants attesting to their membership in the newly

formed network. Therefore, all participants are potential participant membership validators

(PMV). In practical scenarios however, the consortium blockchain networks are often led

by a well known large multi-national organization. For example, IBM and Walmart, both

reputed entities of the IBM Food Trust [27] network are PMVs for other participants of that

network. Because of their status and reputation in global trade and commerce, the organi-

zations in the counter-party network trying to interoperate would most likely trust them as

trust anchors to validate the membership of other organizations in IBM Food Trust. This

however, brings some degree of centralization to the system. But none the less our proposed

identity plane offers all possible options to validate the participant memberships without

relying on any central authority.

Identity exchange and dispute resolution: The only hurdle in deploying the identity ex-

change protocol (Section 4.2.3) for permissioned blockchain interoperation is to make the

legal identity providers such as the organization identity validators and participant mem-

bership validators to issue their credentials as VCs in the identity plane. This is not a

technical challenge but a challenge to push the adoption of digital credentials to all the

countries, government bodies, companies, and other organizations. Once the credentials

are represented as VCs in the IINs, the identity exchange protocol can proceed and set up

cross-chain interoperation without any manual intervention. In case a dispute takes place,

those can be handled through the existing legal process since the credentials issued in the

identity plane are just digital representations of the real world legal credentials and thus are

technically equally enforceable.

In summary, our proposed identity plane infrastructure and protocols act as a bridge

between physical legal identities, credentials, and agreements, and the digital system of

blockchain networks. The same legal entities certifying identities and attesting member-



4.6 Summary 95

ships in the offline processes act as OINs and PMVs in the IIN. The most significant chal-

lenge towards adoption of the proposed identity plane is the fact that its usefulness is only

significant if all possible trust anchors including government bodies agree to adopt the ver-

ifiable credential specifications for as a means of issuing the credentials.

4.6 Summary

Interoperation for data sharing between permissioned blockchain networks running related

business processes requires the networks to have the ability to identify each others’ partic-

ipants and validate their claims/proofs. We have described a way of reasoning about such

protocols, separating identity concerns from data and policy concerns into a different com-

munication plane. To give networks the ability to prove memberships, cross-validate iden-

tities, and share certificates, we have designed a DLT-agnostic architecture and protocols

based on self-sovereign identity and verifiable credential concepts. A proof-of-concept im-

plementation was demonstrated, linking two Hyperledger Fabric networks. This consisted

of an identity registry (IIN) built on Hyperledger Indy and agents built on Hyperledger

Aries exchanging certificates across network boundaries in a peer-to-peer manner.

A prerequisite for the identity exchange protocol presented in this chapter is the ex-

istance of a common trust anchor between the two interoperating permissioned networks,

and more specifically between the participant organizations of the same. The step B of the

Identity Exchange Protocol (Figure 4.7) can succeed only if there is a common trust an-

chor between the verifying organization and the proving organization. The common trust

anchor is the entity which is trusted by the verifying organization and has issued a VC to

the identity proving organization attesting claims about the later’s identity and consortium

membership. However, the question of how such a common trust anchor (if any) can be

negotiatied between these to organizations executing the protocol is left unanswered in this

chapter. This problem of trust anchor negotiation turns out to be a challenging one and we

focus on the same in the following chapter.





Chapter 5

Cross-chain
Negotiation of Common Trust Anchors

Permissioned networks built on the blockchain or distributed ledger technology (DLT) re-

strict memberships and control access to their ledgers for privacy and performance reasons.

Yet, real-world consortium networks built for specific and limited business purposes soon

discover compelling needs to link their processes (smart contracts) and allow assets and

state to move seamlessly across their boundaries [15,18]. Blockchain interoperability aims

to avoid fragmentation and enable scale in the blockchain ecosystem while allowing busi-

ness consortiums to retain autonomy. Enabling interoperability by sharing the ledger state

along with authenticity proofs across network boundaries is a reasonably well-established

concept [15, 18, 20, 137, 155, 156]. However, the infrastructural scaffolding around state

proof generation and validation may vary widely.

We consider a model where one autonomous permissioned network may respond to a

remote query for the state from another with proofs; proof generation and validation at the

ends occur through their networks’ respective consensus and smart contract enforcement

mechanisms [15, 92, 157, 158]. In permissioned networks, proofs must be constructed as

quorums of signatures from participating organizations. Hence, the networks must be fa-

miliar with each others’ identity and certificate providers. As we proposed in the Chapter

4, Verifiable credentials (VCs) [1] along with existing decentralized identity infrastruc-

97



98 Chapter 5

Figure 5.1 Two interoperating networks with some common TAs

ture [25] can be utilized to sync each others’ certificate chains [159], which involves trusted

authorities (trust anchors or TAs) associated with decentralized identity registries to issue

credentials to organizations that certify their real-world identities as well as their mem-

berships in a consortium network. Although this protocol serves as a canonical reference

solution for networks to establish trust a priori without using any shared third-party infras-

tructure other than existing decentralized identity registries and TAs, it also opens up a new

challenge as follows.

As illustrated in Figure 5.1, the credentials used by organizations to prove their real-

world identities and network memberships may be issued by several different TAs associ-

ated with different registries. But such a credential is applicable only if the TA that issued

it is also trusted by organizations in a counterparty network. For example, considering two

networks N1 and N2, the members of both the networks must have at least one common

trust anchor T among their individual list of TAs, whereby the certificates issued by T for

the members of N1 can be verified by the members of N2 and vice versa. (In the absence

of any, organizations and network consortiums will have to go through logistical hurdles

to find reputed certification authorities and obtain new credentials!) This determination is

straightforward if both parties share their TA lists with each other. But an organization may

not be comfortable sharing its affiliation with TAs that the counterparty is not affiliated

with, as these are personal associations, and their revelations may compromise privacy.

Therefore, the problem we would like to solve is as follows: two parties must mutually



99

identify only the TAs they have in common (i.e., those that certify one party and are trusted

by the other) without having to reveal their respective associations with any other TA.

For example, consider the scenario where a trade logistics network (TLN) and a trade

finance network (TFN) must interoperate to share state, as illustrated in [15]. The organiza-

tions in the logistics network are certified by (i.e., possess VCs from) the Maersk Shipping

Company and the American Bureau of Shipping (ABS). The organizations in the finance

network trust the ABS as well as the Mediterranean Shipping Company. Organizations in

each network can safely reveal their associations with ABS and use it as a common TA. But

they may not want to reveal the identities of their other TAs (in this case, Maersk by TLN or

Mediterranean by TFN) as that may compromise the competitive advantage of both the or-

ganizations and their trust anchors. In this case, Maersk and Mediterranean are competitors

in the shipping market, and they would have an interest in learning who else their clients

are working with. But on the flip side, they wouldn’t want their competitors to know who

their clients are either. Though not apparent in this use case, affiliations of an organization,

especially if they are government agencies or political organizations, or NGOs, may be

sensitive. Indeed, the problem we encountered here is not limited to DLT interoperability,

though we are motivated to solve it for that reason. Negotiation between mutually un-

known and untrusting parties with information to reveal and privacy constraints to enforce

was a challenge faced in the Internet services world in the form of trust negotiation and

in grid computing to generate service-level agreements (SLAs) [160]. The notion of need-

ing to keep certification authorities (rather than information and policies) private is a novel

twist, but one we believe will be encountered more and more as decentralized identities and

verifiable credentials grow more ubiquitous in the emerging Web 3.0 world [161].

This chapter analyzes the privacy-preserving TA negotiation problem and provides an

efficient and practical solution for the problem. We first highlight a naı̈ve candidate proto-

col where the TAs actively participate in the process. However, in practice, the TAs are not

expected to act as mediators. We therefore propose a robust and more practical protocol

that builds on classic private set intersection (PSI) [103] and secure multi-party compu-

tation (MPC) [162] techniques. We formally define the trust anchor negotiation problem

based on the real-ideal world paradigm popular in the cryptographic literature. Our con-

tribution then covers a candidate solution for trust anchor negotiation for supporting DLT

interoperability. We formally prove the security of our protocol based on the proposed real-



100 Chapter 5

Privacy-Preserving
Trust Anchor

Negotiation Protocol
Holder Verifier

TH TV

TH∩TV TH∩TV

Figure 5.2 Privacy-Preserving Trust Anchor Negotiation

ideal world definition. Our solution is efficient in practice; its complexity is dominated by

min(a, b) secure equality checks where a and b respectively are the number of TAs that

the members in networks N1 and N2 trust. We also provide a proof-of-concept imple-

mentation [163] of the proposed protocol using MP-SPDZ framework [36] and analyze the

performance of the privacy-preserving trust anchor negotiation protocol in terms of overall

execution time as well as communication bandwidth requirement.

5.1 Problem Statement

Our problem can be modeled with two consortium networks (N1 andN2) that need to sync

each others’ certificate chains and record them to their respective ledgers for interoperation

to ensue. Since each network runs this protocol independently, let us select N1’s sync-

ing and recording of N2’s certificate chains without loss of generality. Each participant

of N1 syncs the certificates of N2 independently and then records it to its ledger through

consensus with other participants in N1.

The TAs that provide the trust basis for N1 and N2 to interoperate are accepted as cer-

tifying authorities by both their consortiums. A VC [1] issued by a TA to a participant of

N2 attests to (i) the identity of the participant, and more importantly (ii) the membership

of the participant inN2. Henceforth, we will refer to the participants ofN2 as VC-holders,

or holders for short, and participants in N1 as verifiers as they must validate holders’ VCs

before syncing their certificate chains. A holder may possess VCs from several different

TAs. A verifier may likewise trust VCs issued by several different TAs, the list having been

agreed upon collectively by its network’s participants. The entire process thus involves

multiple 1-to-1 negotiations between every ⟨holder, verifier⟩ pair, and in each instance, both

parties must select at least one common TA for a successful sync, but without revealing the

identity of any TA they do not have in common (see Figure5.2).



5.1 Problem Statement 101

Definition 3 (Privacy-Preserving Trust Anchor Negotiation (PTAN)). Given that:

• There exists a finite universal set of well known TAs T which is publicly known to

the members of all the participating networks.

• A VC holderH in N2 has a Membership VC from TH ⊆ T TAs

• A verifier V in N1 trusts TV ⊆ T TAs

H and V must reveal some TC ⊆ TH ∩ TV to each other while not revealing any T ∈
T \ (TH ∩ TV).

For a successful exchange and verification of identities, revealing only one T ∈ TH∩TV

is sufficient, and the holder can present the VC issued by this TA to the verifier. However,

in practice, a given TA may be offline or otherwise unreliable, so revealing multiple com-

mon TAs may be prudent to ensure fault tolerance. In our model, privacy is not deemed

to be compromised until and unless a T /∈ TH ∩ TV is revealed; privacy is preserved if a

single common TA or a subset of TH ∩ TV is revealed.

Verifiers without credentials: Verifiers trying to validate the identity of a remote net-

work’s participants do not need to prove or produce their own identity information. There-

fore, verifiers do not require any VC from its own TAs to participate in the protocol. Though

the consortium network to which a verifier belongs has its own agreed-upon set of TAs, and

only this set is acceptable within it, it cannot be validated from outside the network before

completing the TA negotiation process.

5.1.1 Threat Model

Malicious parties: Parties can be malicious and not follow the specified TA negotiation

protocol. They can provide spurious inputs to the protocol instead of providing their own

correct set of TAs in order to infer the TAs belonging to the counterparty’s set that lie out-

side TH ∩ TV . With verifiers not being required to have VCs from their TAs to participate

in the protocol, they may easily fake their input set.

Non-malicious consortiums: While some participants in a permissioned consortium



102 Chapter 5

may be malicious and try to extract private information during identity exchange, the con-

sortium as a whole is not malicious. The network is thus a trustworthy committee [92] that

is not susceptible to Byzantine failures [40].

5.2 Approaches

Holder-verifier negotiation protocols can come in two distinct flavors: (i) where one or

more common TAs are willing to play an active part, and (ii) where no TA needs to be

actively involved apart from issuing VCs to the holder. We believe (ii) is more typical

and makes fewer assumptions about the environment, but before focusing on that, we will

discuss solution approaches that assume an active TA.

5.2.1 Active participation of TAs

We describe a candidate protocol where a TA will respond to both holder H and verifier

V only when it is queried by both simultaneously. The protocol starts with H randomly

selecting some subset ΨH ⊂ TH and V randomly selecting ΨV ∈ TV . H and V simultane-

ously send requests connect(DH,DV) and connect(DV ,DH) respectively to each TA

in their selected sets. HereDH andDV denote the DID of the holder and the verifier respec-

tively. A TA T responds to both parties (and is thereby revealed to them as a common TA)

only if it gets requests from both H and V . If no such T exists, H and V select different

subsets of TH and TV respectively, and the above steps are repeated. A subset of the list of

TAs are chosen in order avoid requesting all TAs simultaneously which might be a burden

for the participants as well as the TAs.

Assuming that TH ∩ TV ̸= ϕ, a common TA is guaranteed to be eventually found by

this protocol. However, this approach has several clear limitations:

(a) Every TA of a verifier needs to know apriori that it is being considered as a negotiation

mediator. In practical scenarios, every VC verifier in a network will have its own arbi-

trary list of anchors. But all verifiers in a network must agree on a common set of TAs



5.2 Approaches 103

they are willing to collectively trust to validate holders’ VCs. Each TA in that list must

be informed apriori of the fact, thereby imposing a logistical hurdle.

(b) The protocol relies on at least one commonly queried non-malicious (no collusion or

refusal of messages) TA being available (i.e., not suffering from a crash fault).

(c) self-sovereign decentralized identity promises that possessing a VC excuses a TA from

being involved in the verifiable presentation process. Therefore, this protocol doesn’t

just negate a key benefit of decentralized identifiers and VCs but may also end up

overburdening TAs.

5.2.2 Without active participation of TAs

Avoiding the involvement of the TAs themselves will require a protocol to jointly compute

the intersection of the input sets from both parties without revealing the inputs to the coun-

terparty. In literature, this specific problem has been studied and is known as Private Set

Intersection (PSI) [103]. PSI protocols allow two parties to input their respective private

sets and jointly compute the intersection without revealing any information about the ele-

ments that are not in the intersection. Therefore, PSI enables a holderH and a verifier V to

compute TH ∩ TV without revealing any T ∈ T \ (TH ∩ TV).

However, a direct application of PSI is insufficient to act as a black box for Privacy-

Preserving TA Negotiation because of a key part of our problem definition: the set of TAs

T, from which TH and TV are drawn, is both finite and universal (which implies that it is

known to both H and V). Treating H (or V) as an adversary, nothing stops it from forging

its own input to the PSI and passing the entire T instead of just TH (or TV). Therefore,

the output of the PSI will be the input set of the other participant since T ∩ TV = TV (and

T ∩ TH = TH). Therefore, any solution to achieve Privacy-Preserving TA Negotiation

where the parties’ input sets are comprised of TAs drawn from a publicly known and finite

set must validate those sets before (or while) attempting a PSI. We propose a solution to

this problem using secure multiparty computing in the next section.



104 Chapter 5

5.3 MPC protocol for TA Negotiation

Consider two parties, each having its own set of trust anchors (from a universal set of trust

anchors known to everyone) that certify a specific claim that they have. Based on the claim

about the counterparty, the MPC based TA negotiation protocol will allow computing the

common set of trust anchors between them, such that for each trust anchor in the intersec-

tion, the parties have a valid signature on the claim in the input set. Here a signature denotes

a verifiable credential issued by the trust anchor. No information about trust anchors out-

side this intersection is revealed. This is a case of bidirectional trust anchor negotiation
where two consortium networks sync each others’ certificate chains simultaneously (N1

from N2 and vice versa), both counterparties in every bilateral VC presentation flow hold

VCs from their respective TAs, i.e., both parties are holders.

In this section, we propose our MPC based Privacy-Preserving Trust Anchor Negoti-

ation (PTAN) protocol. We first provide a high level description of the workings of the

protocol, followed by a formal description. For the formal treatment, we first define Secure

PTAN protocol in the real-ideal paradigm (Definition 4). Finally, we formally prove its

security according to this definition.

5.3.1 Protocol Overview

We propose an MPC based secure PTAN protocol for the two party scenario. As a bidirec-

tional trust negotiation protocol, both the parties have their own set of trust anchors from

which they have valid verifiable credentials (VCs) attesting to their claims. For the pur-

pose of attestation in the VCs, we use the ElGamal signature scheme [164] for the trust

anchor (TA) signatures. We chose to use ElGamal, since it is an extensively used signature

scheme that also serves the purpose for our sample design and investigation. ElGamal sig-

nature scheme is well accepted and at the same time has a suitable structure that allowed

us to adopt it into a secret sharing based MPC scheme. Specifically, the ElGamal signature

scheme’s verification algorithm was suitable to be adapted for the MPC protocol where nei-

ther the signature nor the public key could be revealed during the claim validation process.

In this chapter, we demonstrate the feasibility of MPC based protocol as a practical mecha-



5.3 MPC protocol for TA Negotiation 105

nism for our target application - trust anchor negotiation, and we leave experimenting with

other signature schemes to future work.

Input: Both the parties participating in the MPC-based PTAN protocol input their sets of

trust anchors as well as the VCs obtained from these trust anchors. Each element of this

input set is a tuple consisting of (i) the claim of the party - such as identity and membership,

(ii) the identity of the trust anchor in the form of its public key, (iii) VC, which is the signed

claim from the trust anchor.

Notably, the claim of a party is a public input to the protocol, which means the counter-

party is able to see it in plaintext. On the other hand, the public keys of the trust anchors

(identity of the trust anchors) are secret shared private inputs to the MPC protocol, and thus

remain unknown to the counter-party. The signatures of the VCs are ElGamal signatures

which have two parts, as denoted by (r, s) (see Section 5.3.3), and are treated separately.

The r values are given as public inputs to the protocol, whereas the s values are secret

shared private inputs. Later in Section 5.3.5 we show that revealing the r component does

not compromise the security of our protocol.

Compute intersection and claim validation: Once the claims, trust anchor public keys

and signatures are provided as inputs, the MPC protocol carries out the following oper-

ations for each possible pair of trust anchor inputs from the two parties. (i) subtract the

public keys of the trust anchor pair such that for an identical trust anchor the result will be

zero (ii) validate the VC signature of one party such that the result is zero on successful val-

idation (iii) similarly validate the VC signature of the other party. (iv) combine the results

from the previous three steps by multiplying each of them with a random integer and then

adding. This becomes the result based on which the common trust anchors are revealed in

the output phase.

Output: The results of the computation from the last phase are opened to both parties. This

result is zero for a pair of trust anchors only if (i) they have the same identity, implying a

common trust anchor (ii) both parties have valid signatures on their claim implying a valid

VC from that trust anchor. Therefore, the corresponding trust anchor is finally opened to

both parties which reveals the identity of the common trust anchor.



106 Chapter 5

5.3.2 Definition of PTAN in Real-Ideal Paradigm

In order to formally prove the security of our protocol we define the bidirectional TA ne-

gotiation problem using the real-ideal paradigm, which is standard in the cryptography

literature.

Ideal World: We first define an ideal protocol using a trusted third party. In the ideal

protocol, two participating parties have to submit their disposal to a trusted third party τ

that will perform the bidirectional PTAN. The parties P1 and P2 inform τ their input sets;

then τ privately computes the intersection after validating the issuers’ signatures and finally

reveals the output to both the parties. Let P1 and P2 obtain their input sets SP1 and SP2 ,

respectively. The input sets contain two tuples – the public key and the signature of the

issuing TA over a claim known to both the parties. A TA is identified using its public key,

and IDP1 and IDP2 are the sets of public keys of the TAs of P1 and P2 respectively. Input

set SP1 = {
(
y, σy,mP1

)
| y ∈ IDP1}. Here σy,mP1

denotes claim mP1 about the party P1,

signed by issuer y’s private key. P2’s input set SP2 is defined similarly.

Initialization: Party P1 sends a message (start, P1, P2) to τ , if it wants to start the

protocol with another party P2. If party P2 sends the message (start, P2, P1), then τ

responds with ok to P1 and P2, then the protocol starts. Otherwise, τ sends abort to P1

and P2, and the protocol is aborted there.

Inputs of P1: (i) P1 sends SP1 to τ ; (ii) τ sends |SP1 | to P2; (iii) P2 responds with either

abort or ok.

Inputs of P2: (i) P2 sends SP2 to τ ; (ii) τ sends |SP2 | to P1; (iii) P1 responds with either

abort or ok.

Computation: τ validates the signatures σy,m against the public key y and the claim m in

the input sets SP1 & SP2 and computes the validated sets of public keys of TAs V(SP1)

and V(SP2), respectively. Here V(SP1) = {y |
(
y, σy,mP1

)
∈ SP1 ∧ σy,mP1

is valid},
and similarly V(SP2). τ then computes the intersection of validated sets of public keys:

O∗ = V(SP1) ∩ V(SP2).



5.3 MPC protocol for TA Negotiation 107

τ sends O∗P1
= O∗ to P1 and O∗P2

= O∗ to P2.

Let this ideal world functionality be denoted byF . Therefore, (O∗P1
,O∗P2

)← F(SP1 ,SP2).

Real World: Parties P1 and P2 are expected to execute the specified bidirectional PTAN

protocol (in the absence of any trusted third party). The parties may be malicious i.e., devi-

ate from the protocol and follow arbitrary polynomial time strategies to achieve more than

what is allowed by the protocol. For instance, a PTAN protocol attempts to prevent a mali-

cious party to: (i) learn about the other party’s TAs that are not present in the intersection,

(ii) introduce a TA in the output intersection without possessing a claim that it has attested,

(iii) prevent the other party to learn about the output after it itself learns about it (fairness

property).

Definition 4 (Secure PTAN Protocol). For a security parameter λ, a protocol π is a Secure

PTAN protocol in the presence of malicious adversaries if for every real-world adversary

A that runs in time polynomial in λ, there exist a simulator S that runs in time polyno-

mial in λ, such that for all inputs to the honest party B, the following distributions are

indistinguishable, except with a probability negligible in λ.

Realπ,A(λ; {SP2}) ≈comp IdealF ,S(λ; {SP2}) (5.1)

with comp referring to the possibility that additional computational assumptions can be

involved.

Realπ,A(λ; {SP2}) is running the protocol with the honest party P2 using its private in-

put SP2 , and the messages of the corrupt party P1 chosen according to A. The output is

(VA,OP2), where VA denotes the view1 of the adversary A and OP2 is the output of P2.

IdealF ,S(λ; {SP2}) denotes running a stateful simulator S (ideal world adversary) to

find a set of inputs SA for adversary A, then using the ideal functionality F to compute

(O∗A,O
∗
P2
) ← F(SP1 ,SP2). Then O∗A is given as input to S, which outputs V ∗. The output

of IdealF ,S is (V ∗,O∗P2
).

1View of a party in a protocol refers to all the messages that the party has access to during its participation

in the protocol, which also includes its secret inputs and other internal randomness.



108 Chapter 5

5.3.3 Preliminaries

ElGamal Signature Scheme

The essential procedures for ElGamal signature scheme are as follows:

Key generation: Let N be the key length. An N bit prime number p is chosen, and a

cryptographic hash function H (.) is chosen with output length L. Let L < N . Choose

a generator g of the multiplicative group Z∗p . A private key x is chosen randomly from

{1 . . . p− 2}. The public key is computed as y := gx mod p.

Signing: For signing a message m, choose an integer γ randomly from {2 . . . p− 1}, such

that γ is relatively prime to p − 1. Compute r := gγ mod p and s := (H (m) − xr)γ−1

mod (p− 1). If s = 0, start with different γ. The signature is denoted by (r, s).

Verification: A signature (r, s) can be verified with the help of the public key y as follows:

Signature is valid if and only if gH(m)) ≡ yrrs mod p.

Secure Multiparty Computation (MPC)

MPC [162] addresses a problem involving two or more parties that wish to jointly compute

a given function result where each party provides an input privately. Only the function

result is revealed, while nothing more about the private inputs than the function result is

disclosed to other parties. Through the MPC protocol, the parties compute the function by

communicating among themselves without unduly giving any information about the private

inputs. Over the years, many MPC protocols have been introduced in the literature, such

as based on garbled circuits [165], and secret sharing [166].

Notations

For each TA of party P1, we denote the corresponding ElGamal private key and public key

pair as αi and βi respectively. Similarly, the private key and public key pair of each TA



5.3 MPC protocol for TA Negotiation 109

of party P2 is denoted by µj and ωj respectively. The TAs are identified by their public

keys, and hence the TA set of P1 and P2 are IDP1 = {β1, .., βa} and IDP2 = {ω1, .., ωb}
respectively, where a and b are the number of TAs of P1 and P2 respectively.

Let the signature issued by βi to P1 on the claim mP1 be represented as σy,mP1 i
=

(rP1 i, sP1 i). Party P1’s input set to the protocol is thus represented as SP1 = {(βi, (rP1 i, sP1 i)) | βi ∈
CP1}. Let the signatures over the claim mP2 issued to party P2 by its TAs ωj ∈ IDP2 be

(rP2j, sP2j). Party P2’s input set to the protocol is therefore SP2 = {(ωj, (rP2j, sP2j)) | ωi ∈
IDP2}.

For binary representation of a data d, the nth bit of d starting from least significant bit

is denoted as d[n].

5.3.4 Formal Description of the Protocol

Algorithm 3 depicts the steps of our proposed MPC based PTAN protocol. At the begin-

ning of the protocol, through steps (1 to 6), the parties P1 and P2 exchange the r values

of the signatures (r, s) in their input sets as RP1 = {rP1 i | (βi, (rP1 i, sP1 i)) ∈ SP1} and

RP2 = {rP2j | (ωj, (rP2j, sP2j)) ∈ SP2} respectively. Therefore, this reveals the size of the

input sets a = |SP1 | and b = |SP2| to both the parties, and we would argue in Theorem

2 that this does not reveal information about the respective public keys. To aid in fast ex-

ponentiation (Algorithm 4) inside the MPC protocol, R̂P1 and R̂P2 are calculated in steps

(2) and (5) respectively and provided as (public) inputs. Each party also samples a random

integer, randP1 , randP2 in step (8). Finally the MPC protocol (steps 11 to 24) receives

the following public inputs:
{
RP1 , R̂P1 ,RP2 , R̂P2 , g

H(mP2
), gH(mP1

)
}

ElGamal parameters

N, g and p are also available as public inputs to the MPC.

Party P1 gives the following as private input to the MPC protocol in step (9) randP1 , {β
rP1 i
i

mod p, sP1 i | (βi, (rP1 i, sP1 i)) ∈ SP1}, and {β
rP2 j

i mod p | rP2j, βi ∈ RP2 × IDP1}.
Similarly the private input by P2 to the MPC is randP2 , {ω

rP2 j

j mod p, sP2j | (ωj, (rP2j, sP2j)) ∈
SP2}, and {ωrP1 i

j mod p | rP1j, ωj ∈ RP1 × IDP2} (step (10)).

The MPC protocol first computes a random integer rand combining randP1 and randP2



110 Chapter 5

Algorithm 3: MPC based PTAN protocol
1 P1 sends the set of rP1

values of signatures: RP1
= {rP1 i

| (βi, (rP1 i
, sP1 i

)) ∈ SP1
}, to P2 as clear input.

2 R̂P1
=

{
ˆrP1 i
| rP1 i

∈ RP1

}
is also computed as public input fromRP1 where ˆrP1 i

= {rP1 i
, (rP1 i

)2, (rP1 i
)4, .., (rP1 i

)2
(N−1)

mod p} .

3 P2 ensures each rP1 i
̸≡ 0 mod p, and aborts otherwise.

4 P2 sends the set of rP2 values of signatures: RP2 = {rP2 j | (ωj , (rP2 j , sP2 j)) ∈ SP2}, to P1 as clear input.

5 R̂P2 =
{

ˆrP2 j | rP2 j ∈ RP2

}
is also computed as public input fromRP2 where ˆrP2 j

= {rP2 j
, (rP2 j

)2, (rP2 j
)4, .., (rP2 j

)2
(N−1)

mod p} .

6 P1 ensures each rP2 i
̸≡ 0 mod p, and aborts otherwise.

7 P1 and P2 also input in clear gH(mP2 ) and gH(mP1 ) respectively corresponding

to the claims mP2
and mP1

to the MPC, based on which they want the counterparty’s inputs to be validated.

8 P1 and P2 respectively sample random integers randP1
, randP2

← Zp in private.

9 P1 gives the following as private input to the MPC protocol:

(i) randP1

(ii) {β
rP1 i
i mod p, sP1 i | (βi, (rP1 i, sP1 i)) ∈ SP1}

sP1 i
is given input in binary representation.

(iii) {β
rP2 j

i mod p | rP2 j , βi ∈ RP2 × IDP1}

10 P2 gives the following as private input to the MPC protocol:

(i) randP2

(ii) {ω
rP2 j

j mod p, sP2 j
| (ωj , (rP2 j

, sP2 j
)) ∈ SP2

}
sP2 j

is given input in binary representation.

(iii) {ω
rP1 i
j mod p | rP1 j

, ωj ∈ RP1
× IDP2

}

MPC:
11 Initialize rand← randP1

+ randP2
mod p

12 for i← 1 . . . a do
13 Initialize secret integers c1, c2, c3, c4 ← 1

▷ Validate P1’s input signature

14 Compute ηP1
= rP1

sP1 i
i mod p = FExp( ˆrP1 i

, sP1 i
) (Algorithm 4)

15 Compute θP1 = ηP1β
rP1 i
i mod p

16 c1 ← θP1 − gH(mP1
)

17 for j ← 1 . . . b do
▷ Match TA

18 c2 ← (β
rP1 i
i − ω

rP1 i
j )

▷ Validate P2’s input signature

19 Compute ηP2 = rP2

sP2 j

j mod p = FExp( ˆrP2 j , sP2 j)

20 Compute θP2
= ηP2

ω
rP2 j

j mod p

21 c3 ← θP2
− gH(mP2

)

22 c4 ← c4 · (c2 + rand · c3)

23 if c1 + rand · c4 == 0 then
24 Output (β

rP1 i
i , rP1 i

)

25 P1 and P2 collect the outputs from MPC in a set Q.

26 P1 computes OP1
as {βi = (β

rP1 i
i )

(rP1 i
−1)

mod p|(β
rP1 i
i , rP1 i

) ∈ Q}

27 P2 computes OP2
as {βi = (β

rP1 i
i )

(rP1 i
−1)

mod p|(β
rP1 i
i , rP1 i

) ∈ Q}



5.3 MPC protocol for TA Negotiation 111

Algorithm 4: Fast Exponentiation: FExp(r̂, s)
1 Input: r̂ = r, r2, r4, .., r2

(N−1)
mod p,

s in N bit binary representation.

s =

N−1∑
b=0

s[b] · 2b

rs mod p = r
∑N−1

b=0
s[b]·2b mod p

=

N−1∏
b=0

rs[b]·2
b

mod p

=

N−1∏
b=0

(
s[b] · r2

b
+ (1− s[b])

)
mod p

2 Return rs mod p

in step (11). Then it iterates through each input from P1 through step (12), where it first val-

idates signature (rP1 i, sP1 i) from the TA βi over claim mP1 through steps (14) to (16). For

each β
rP1 i
i , each input of P2 is iterated over and β

rP1 i
i is compared to ω

rP1 i
j for j = 1 . . . b

(step (18), while also validating the signature (rP2j, sP2j) from ωj on mP2 (steps (19) to

(22)). Step (23) ensures that for a particular β
rP1 i
i , the pair (β

rP1 i
i , rP1 i) is outputted by

the MPC only if the signature from βi is valid, as well as there is some ωj for which the

signature from ωj is valid, and β
rP1 i
i == ω

rP1 i
j . P1 and P2 collect the outputs from MPC in

a set Q in step (25). From Q, the two parties P1 and P2 compute OP1 and OP2 respectively

as {βi = (β
rP1 i
i )(rP1 i

−1) mod p | (βrP1 i
i , rP1 i) ∈ Q}. βi is polynomial time computable

given βi
rP1 i and rP1 i, by computing rP1 i

−1 mod p− 1 in Z∗p .

• Correctness: When both parties P1 and P2 are honest, for each common TA βi = ωj ,

the condition β
rP1 i
i == ω

rP1 i
j is satisfied (step (18)). Therefore the ith signature of SP1 :

(rP1 i, sP1 i) and the jth signature of SP2: (rP2j, sP2j) are validated within the MPC pro-

tocol in steps (14) to (16) and steps (19) to (21) respectively. Then the output set O =

V(SP1) ∩ V(SP2) is revealed to both the parties which is the correct output as per the ideal

world definition of bidirectional PTAN.

• Complexity: The MPC based PTAN protocol has two loops, an outer loop iterating over

inputs of P1 in step (13) a times, and an inner loop in step (17) iterating over inputs of P2, b

times. The complexity of the protocol is thus O(a · b ·N) multiplications and O(a) equality

checks. In a secure MPC protocol for arithmetic circuits [37, 166], the complexity of O(a)



112 Chapter 5

equality checks dominate the execution time. In order to optimize the execution time based

on the size of the input sets of the two parties, the MPC is initialized to iterate over the

smaller input set in the outer loop which admits O(min(a, b)) secure equality checks. We

validate this through experiments in §5.4.

5.3.5 Security Analysis

In this section, we analyze the proposed MPC based PTAN protocol (Algorithm 3), and

show that it satisfies Definition 4.

First, we show that despite the fact that rP1 i and rP2j are shared in the clear with the

counterparties in steps (1) and (4) of Algorithm 3, no information about the input set of TA’

public keys is revealed from them.

Theorem 2. Given only r of an ElGamal signature (r, s), the public key of the signer y

cannot determined.

Proof. Apriori probability of determining the public key of the signer in ElGamal signature

scheme (see §5.3.3), without any other information, is given by P(y) = O( 1
2N

), where N

is key length in bits, since the private key is sampled randomly from {1, . . . , p− 2}.

When signing a message, the signer samples an integer γ randomly from {2, . . . , p−1}
and relatively prime to p−1. There are φ(p−1) = (p−1)

2
−1 group elements relatively prime

to p− 1 when p is a safe prime. And, more importantly, this sampling is done independent

of y. Signer computes r := gγ mod p, and hence P(r|y) = P (r).

Therefore, the a posteriori probability of determining y, given an r, is given byP(y|r) =
P(y)P(r|y)
P(r) = P(y).

Corollary 1 (To Theorem 2). When provided a set of public keys ID and an r of a valid

signature (r, s), such that IDmay or may not contain the public key y of the signer of (r, s),

it cannot be determined whether y ∈ ID with more than the guessing probability 1/2.



5.3 MPC protocol for TA Negotiation 113

Next we show that Algorithm 3 is a secure PTAN protocol in presence of malicious

adversaries.

Theorem 3. When constructed with an MPC protocol which is secure against malicious

adversaries Algorithm 3 specifies a bidirectional PTAN protocol (Definition 4).

Proof. Without the loss of generality, let us consider an honest party P2 and an adversary

A participating in the protocol. We construct a simulator S for the adversary. S is given an

oracle access to the real-world adversary A.

S uses the simulator SMPC of the maliciously-secure MPC protocol πMPC that is used to

construct the PTAN protocol. S plays the role of IdealFMPC,SMPC for SMPC and makes SMPC

select inputs I∗ = {r∗Ai, β
∗
i
r∗Ai , s∗Ai, β

∗
i

r∗P2 j , randA}, to the MPC protocol for the adversary

A, for which the joint distributions of the output of IdealFMPC,SMPC is computationally in-

distinguishable from the output of RealπMPC,A. From this set of adversarial inputs to the

MPC, the simulator S constructs the adversarial inputs for the MPC based PTAN proto-

col S∗A = {(β∗i , (r∗Ai, s
∗
Ai))}. β∗i is polynomial time computable from r∗Ai, β

∗
i
r∗Ai ∈ I∗, by

computing r∗Ai
−1 mod p− 1. Therefore S computes S∗A in polynomial time from I∗.

IdealF ,S provides S∗A and SP2 as inputs to F and obtains (O∗A,O
∗
P2
). S then obtains

as input O∗A which is the output of the ideal functionality to A. S starts the MPC based

PTAN protocol in the ideal world by first sending (start, A, P2) to τ . Assuming P2

does not abort the protocol, S sends S∗A to τ , and receives b = |SP2|. S randomly chooses

|SP2 | integers from {2...p− 1}, such that they are relatively prime to p− 1 and constructs

R∗P2
= {rP2

∗
1, .., rP2

∗
b}. S also obtains the view of the adversary during MPC execution

V ∗MPC from SMPC. S finally outputs V ∗ = {S∗A,R∗P2
, V ∗MPC}. Hence,

IdealF ,S(λ; {SP2}) =
(
{S∗A,R∗P2

, V ∗MPC},O∗P2

)
In the real world, the view of the adversary VA = {SA,RP2 , V

MPC
A }, where V MPC

A is the

view of the malicious party A during the MPC protocol. Hence,

Realπ,A(λ; {SP2}) =
(
{SA,RP2 , V

MPC
A },OP2

)
It is evident that the distribution of the output of the honest party O∗P2

from IdealF ,S(λ; {SP2})



114 Chapter 5

2 20 40 60 80 100 120
Size of each input set

0

20

40

60

80

100

Ti
m

e 
(s

ec
)

64 bit prime
128 bit prime

(a)

20 40 60 80 100 120
Size of varying input set

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Ti
m

e 
(s

ec
)

(b)

Figure 5.3 Execution time – (a) with varying set sizes for both parties, (b) keeping one set
size constant at 20, while varying the other.

2 20 40 60 80 100 120
Size of each input set

0

1

2

3

4

5

6

D
at

a 
se

nt
 (

G
B)

64 bit prime
128 bit prime

(a)

20 40 60 80 100 120
Size of varying input set

0

200

400

600

800

1000

1200

D
at

a 
se

nt
 (

M
B)

(b)

Figure 5.4 Data communication overhead – (a) with varying set sizes for both parties, and
(b) keeping one set size constant at 20, while varying the other.

and OP2 from Realπ,A(λ; {SP2}) are computationally indistinguishable given the security

of ElGamal signature scheme that does not allow the parties to forge signatures given pub-

lic key and not the corresponding secret key. Moreover, considering maliciously-secure

MPC protocol, the joint distribution of the output of IdealFMPC,SMPC is computationally in-

distinguishable from the output of RealπMPC,A, and hence (V ∗MPC,Q∗P2
) ≈comp (V

MPC
A ,QP2).

V ∗MPC and V MPC
A includes the input to the MPC I∗ and I respectively which contain R∗P2

and RP2 respectively and from which S∗A and SA respectively can be computed in polyno-

mial time. From Q∗P2
and QP2 , O∗P2

and OP2 respectively can be computed deterministically

in polynomial time. This implies (S∗A,R∗P2
, V ∗MPC,O∗P2

) ≈comp (SA,RP2 , V
MPC
A ,OP2).

Therefore Realπ,A ≈comp IdealF ,S .



5.4 Implementation and Evaluation 115

<1 1 10 50 100
Link latency (ms)

0

200

400

600

800

1000

1200

Ti
m

e 
(s

ec
)

Figure 5.5 Execution time with varying link latency.

5.4 Implementation and Evaluation

We have implemented the MPC based PTAN protocol using MP-SPDZ framework [36]

and made the source code available [163]. We have analyzed the performance of the PTAN

protocol in terms of overall execution time as well as communication bandwidth require-

ment. We conducted experiments on two emulated participants running on a workstation

equipped with Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz, and 128GB memory. We

have used the Mascot [167] protocol, which is a maliciously-secure MPC protocol for arith-

metic circuits using oblivious transfers. By varying the size of input sets of both the parties

together from 2 to 120, we observe a linear increase in execution time and data commu-

nication overhead with the size of inputs in Figure5.3a and Figure5.4a respectively. The

experiment is repeated for 64-bit and 128-bit primes. With 64-bit primes, even for large

sets of 120 trust anchors, the time taken is less than 25 seconds, and the communication

overhead is∼1GB. For smaller sets of 20 trust anchors, the time is less than 4 seconds, with

a data communication overhead of ∼170MB. With 128bit primes, the execution time and

communication overhead increase to ∼16seconds and ∼1 GB, respectively, for set size 20.

In case the PTAN protocol receives skewed inputs, such that the input set size of one

party is small and that of the other party is large, the computation time and the data com-

munication overhead depend on the smaller input set. Figure5.3b and Figure5.4b show the

time taken and the data communicated overhead respectively (with 128-bit primes) in a

scenario where one party inputs a set of size 20, and the size of the input set of the other

party is varied from 20 to 120. From the two figures, we can observe that the time and the

communication overhead remain consistent with the size of the smaller set at < 20 seconds



116 Chapter 5

and ∼1GB, respectively.

In practical scenarios, any consortium network is not likely to have hundreds of trust

anchors, considering that these trust anchors are well-known entities such as companies,

organizations, or governments that directly attest to the identity and membership of the

consortium participants. Considering privacy-preserving trust negotiation is to be carried

out only when configuring identities across two consortium blockchain networks before

interoperability, it is a one-off process (or repeated in considerable time intervals), the time

and communication overhead are acceptable.

To study the impact of link latency between the two parties, we varied the link latency

from < 1ms to 100ms, and Figure6.10 shows the execution time for input set sizes of 20

and 120, using 128bit primes. We observe that the execution time increases significantly

with the link latency, which is expected for MPC-based protocols.

5.5 Summary

The decentralized verification of credentials presents an interesting conundrum: how do the

credential holder and verifier identify a certifier (or credential issuer) they have in common

without revealing the identities of those they don’t? This privacy-preserving certifier deter-

mination problem holds great importance for decentralized networks that wish to establish

a basis for interoperability using decentralized identity and common TAs. We introduced

an MPC based construction for privacy-preserving trust anchor negotiation, inspired by the

classic PSI. Implementation and analysis shows that our proposed protocol can be viably

utilized by blockchain networks’ participants to identify the common TAs.

Notably, the problem of determining a common trust basis (i.e is a common trust an-

chor) is applicable wherever verifiable presentation flows are involved and is not limited to

blockchain interoperation scenarios. Our solution of TA negotiation considers the simplest

case of credentials attesting a single claim. In a generalized scenario of negotiation of trust

basis, the parties might need to validate multiple claims to find out a common certifier for

those claims. In the next chapter, we aim to generalize the problem of determining common



5.5 Summary 117

certifiers of claims between multiple parties. We further extend the use case to accommo-

date validation of multiple claims, and incorporate widely used signature schemes such as

ECDSA, and BLS.





Chapter 6

Private Certifier Intersection

6.1 Introduction

In the traditional web (Web 2.0), users are dependent on a limited set of identity and ser-

vice providers and public Certificate Authorities (CAs) [30] to initiate trusted interactions.

Recent trends in decentralization towards Web 3.0 aim to remove such dependencies on

centralized service providers. A prominent problem in the decentralized web revolves

around identity and trust. Decentralized Identifiers (DIDs) [25] and Verifiable Credentials

(VCs) [1] enable parties to own and control their identities. This implies a self-sovereign

ability to create, update, and selectively share identity records. Importantly, one can prove

properties (or claims) about themselves without relying on centralized/federated identity

providers or a canonical trusted set of CAs [25, 79, 142], as long as the VC issuer (also

called a trust anchor [34]) is trusted by both the prover and the verifier of a claim. In a

nutshell, existing DID and VC recommendations give users the ability to control their pri-

vacy while engaging in a trusted decentralized interaction. But, there are scenarios where

these recommendations cannot adequately safeguard user privacy unless we introduce new

privacy-preserving mechanisms. In its most general form, the scenario we are concerned

about involves two parties wishing to establish a trust basis for future interactions. Ser-

vice providers in the Semantic Web have encountered such situations, and mechanisms for

trust negotiation [102] were proposed to minimize privacy compromise without sacrificing

119



120 Chapter 6

decentralization, albeit for a specific model of service provider-consumer interaction. In

grid computing, service-level agreements (SLAs) [160] followed a similar template. This

challenge has returned to salience in today’s Web3 world, where private and independent

blockchain systems have business imperatives to interoperate [15]. The interaction model

common to these scenarios involves no a priori trust between the interacting parties, though

they may, unbeknownst to each other, possess VCs (or more generally certificates) from

common trust anchors (or more generally certifiers) attesting to different claims.

A trust basis for interoperation can be established between two parties if they can de-

termine that they both possess valid certificates attesting to certain claims, and that these

certificates are issued by one or more certifiers that they both trust. But this is hard to

do in the absence of a priori trust or knowledge of the counterparty’s intentions, or without

compromising one’s privacy. We can see why this is so by applying the standard VC recom-

mendation, whereby one party makes a Verifiable Presentation (VP) [1] to another, to our

scenario. In a typical VC use case, the relationship between credential presenter and veri-

fier is asymmetric, as the verifier is typically a well-known entity from whom the presenter

seeks service or approval. The presenter knows at least one certifier that is trusted by it and

the verifier. Typically, this requires the verifier to publish its complete list of certifiers so the

presenter can determine ones that are commonly trusted by both parties [114]. But in our

interaction model, the relationship between parties is symmetrical, as they are both trying

to simultaneously prove something to the other. In a standard VP, the presenter is will-

ing to share credentials (albeit selectively) with the verifier. But, if we use this asymmetric

VP-based solution in our scenario where neither party knows anything about the other a pri-

ori, the revelation of credentials by the party that presents first will automatically give more

leverage to the counterparty (verifier), which learns more about the presenter than it reveals.

A naı̈ve adaptation of an asymmetric solution (such as [114]) to our symmetric setting

would require both parties to reveal to each other the list of certifiers from which they have

valid certificates, and then identify if there is a mutually trusted certifier. This entails com-

plete loss of privacy for both parties, but especially for an honest party if the other behaves

maliciously. There are strong reasons why revealing one’s complete list of certifiers might

not be in one’s interest. A business-oriented certifier, for instance, might not like its clien-

tele to be visible to its market competitors. Consider the blockchain interoperability sce-

nario elaborated in the previous chapter (Chapter 5), where shipment carriers on different



6.1 Introduction 121

trade networks certify their respective networks’ participants, e.g., Maersk Shipping Com-

pany (on the TradeLens network [10]) and the American Bureau of Shipping (ABS). But as

Maersk and ABS are market competitors, they may not necessarily want their clients (the

certificate holders) to reveal their respective associations. Knowing the clientele of Maersk

may benefit ABS, and vice versa; hence there is a privacy cost to revealing certifier lists in

a symmetrical interaction unless those certifier lists are identical.

The other privacy violation aspect is from the perspective of the certificate holder. Ev-

ery certificate possessed indicates an affiliation with some real world entity, often a well-

known one; this could include government agencies, political organizations, NGOs, etc.,

and such affiliations might be sensitive information that could potentially be misused. And

here lies the biggest hazard in the naı̈ve trust basis establishment solution: one of the two

interacting parties could be malicious and is trying to fish for information about its coun-

terparty’s affiliations. A simple attack would be for the malicious party to offer a long list

of certifiers, regardless of whether it possesses valid certificates from them, and have the

honest counterparty reveal its true certifier list. Now the malicious party knows, and can

misuse, the honest party’s affiliations, without revealing its own true affiliations. In the

context of trust anchors (TAs) in the DID & VC world, where any entity can issue a VC

and there does not exist a canonical list or registry of global TAs, it would not be a hard

task for a malicious counterparty to list as many of them as possible to mount the attack we

just described. Therefore, we can identify a compelling need to maintain certifier privacy

and authenticity, which are not addressed by the naı̈ve solution for determining common

certifiers. This motivates us to ask the following question:

Can parties owning certificates efficiently identify

a common set of certifiers without leaking anything else?

In particular, the parties should not learn any information about certifiers that may be in the

lists of other parties but are not in the intersection.

In this chapter, we initiate the study of Private Certifier Intersection (PCI) – a cryp-

tographic primitive that aims to answer the above question in the affirmative. Informally

speaking, a PCI protocol allows a set of mutually distrusting certificate-holding parties to



122 Chapter 6

achieve a privacy-preserving trust negotiation with the following objectives: (i) find an in-

tersection among the set of certifiers across the parties, (ii) ensure that the certificates issued

by these certifiers are valid, and (iii) reveal no information about the certifiers that may be

in the lists of individual parties but are not in the intersection.

Comparison with Private Set Intersection. At a first glance, the classic Private Set Inter-

section (PSI) problem [103, 105], where the intersection of two private sets must be deter-

mined without a trusted mediator, bears a strong resemblance to PCI (also see Figure 6.1).

In both PCI and PSI, a set of mutually distrusting parties holding private sets of entities aim

to compute the intersection between their sets without revealing any additional information

about the elements in their individual sets that are not in the intersection. However, the

non-triviality of PCI arises from the need to additionally validate the certificates issued by

the certifiers in the intersection. In this sense, one can think of PCI as a form of “predi-

cated” PSI, where the inclusion of a common certifier in the final output set is predicated

on the certificates issued by this certifier to each of the parties being valid (see Figure 6.2

for an illustration). We argue in this chapter that realizing an efficient PCI protocol with

ideal security guarantees requires novel techniques beyond simply using PSI as a building

block. Consider the hazard we encountered earlier in the naı̈ve solution to establish a trust

basis. Using standard PSI, a malicious party could simply supply a long (or universal) list

of certifiers as input and determine the list of certifiers of the other (honest) party. To avoid

this hazard, we need to enforce the ability of participants to prove that they possess gen-

uine certificates issued by thir claimed certifiers. There is no obvious way to do this using

standard PSI, and therefore PCI requires novel mechanisms that are not congruent to PSI’s

mechanisms.

Achieving Semi-Honest PCI. It turns out that in the setting of semi-honest corruptions (i.e.,

when the participating parties behave honestly as prescribed in the protocol), one can easily

achieve a secure PCI protocol by using any secure PSI protocol in a black-box way. Con-

sider the following simple construction: each party first locally “filters” its private list of

certifiers based on the validity of the certificates issued by such certifiers, and then uses this

filtered list of certifiers as its input to an execution of a PSI protocol to securely identify

their intersection. Correctness is immediate, since, assuming honest behavior, the filtered

list for each party only contains certifiers issuing valid certificates. Security follows from

the security of the underlying PSI protocol.



6.1 Introduction 123

Figure 6.1 Private Set Intersection (PSI): Match Values

Figure 6.2 Private Certifier Intersection (PCI): Match Certificates with Common Issuers

Upgrading to Malicious Security. Unfortunately, in the setting of malicious corrup-

tions (i.e., when the participating parties can deviate arbitrarily from the protocol), it is

seemingly hard to achieve a secure PCI protocol by simply using certification validation

and a (maliciously secure) PSI as individual black-boxes. To begin with, we cannot rely

on the parties to filter the local sets of certifiers correctly; in fact, the parties can prepare

arbitrary sets of certifiers, including those for which it does not have valid certificates.

For example, in the setting of two-party PCI, if one party (say Alice) provides a “uni-

versal set” of certifiers as input to a PSI protocol, it can learn the complete set of certifiers

of the other party (say Bob). This attack may not be feasible in a general PSI setting where

listing the entire range of values in an input set may be infeasible or prohibitively expen-

sive, but is quite feasible in a PCI setting where the range of certifiers (trusted authorities) is



124 Chapter 6

limited. Therefore, it is crucial for both Alice and Bob to verify that the other is not faking

its input set, and so the validity of certificates and the signatures within must be proven by

both parties during the protocol. This is challenging because neither Alice nor Bob knows

a priori which set of certifiers it needs to supply proof for (indeed, this is the objective of

PCI), and providing more proof than strictly required (i.e., revealing certifiers outside the

intersection) would violate privacy goals. Therefore, we must somehow intertwine certifi-

cate validation with a PSI-like protocol to achieve PCI. In other words, a maliciously secure

PCI protocol cannot be achieved securely without a mechanism that somehow intertwines

certificate validation with the subsequent PSI protocol.

Theoretically, a maliciously secure PCI protocol can be achieved as follows: run a mali-

ciously secure multi-party computation (MPC) protocol for the functionality that: (i) filters

the certifier list for each party to identify the certifiers issuing valid certificates attesting to

the relevant claims, and (ii) computes the intersection between these filtered sets. This solu-

tion is highly inefficient in practice for essentially all widely used cryptographically secure

certification mechanisms. For example, the most common method of generating certifi-

cates is to sign the claim using a digital signature algorithm. In this case, claim validation

would require us to perform signature verifications inside the MPC protocol, which is pro-

hibitively expensive for popular digital signature schemes such as ECDSA [168, 169] and

BLS [131,170,171], that rely on elliptic curve-based finite-field arithmetic operations. Im-

plementing such a verification algorithm inside a maliciously secure MPC protocol would

involve non-black-box usage of the various elliptic-curve (EC) operations, i.e., we would

have to express these operations as (potentially complicated) binary/arithmetic circuits with

gate operations over {0, 1} or over some finite field Fp. Such a maliciously secure MPC

protocol is likely to incur huge computational and communication overheads in practice.

Need for Efficient Protocols. The above discussion motivates specialized PCI protocols

that efficiently enable computing the intersection of certifier-sets while: (i) achieving the

desired security guarantees in the setting where a majority of the parties could be mali-

ciously corrupt, and (ii) minimizing non-black-box usage of the operations in the certificate

validation algorithm. In this chapter, we design and implement two concrete PCI protocols

– based on the ECDSA signature scheme and the BLS signature scheme – that achieve

the above goal while supporting different variations of claim validation (we expand on

this later). While our protocols broadly follow the generic approach outlined above, the



6.1 Introduction 125

main novelty lies in how we validate signatures while using the underlying elliptic curve-

based operations in a black-box manner. For an (informal) comparison, the generic MPC-

based solution is expected to incur O(xd) computation/communication cost, where x is

the corresponding cost of our protocols, and d is the average depth of the arithmetic cir-

cuits representing EC operations (e.g., d = 256 for constant-time scalar multiplication over

curve-ED25519 and curve-BLS12-381).

6.1.1 Overview of Contributions

In this section, we provide an informal overview of the key technical contributions of this

chapter.

Defining PCI. We formalize the security guarantees expected of a (multi-party) PCI proto-

col using the simplified universal composability (SUC) framework due to Canetti, Cohen,

and Lindell [172] in the real/ideal world paradigm. We consider two variations of PCI

protocols in this chapter:

• Validate-Any PCI: A PCI-Any protocol outputs the set of common certifiers for

which each party has at least one valid certificate attesting to any one of its (pub-

licly known) claims.

• Validate-All PCI: A PCI-All protocol outputs the set of common certifiers for which

each party has valid certificates attesting to all of its (publicly known) claims.

We also consider a variant of validate-any PCI which we call validate-any PCI with dis-

closed claims (abbreviated as PCI-Any-DC) where, for each common certifier in the output

set, the parties additionally learn the set of claims attested by the certifier. We refer to

Section 6.2 for a formal description.

MPC for Elliptic Curve Pairings. As a fundamental building block of our proposed PCI

protocols, we introduce a new secret-sharing based MPC framework that is tuned for ellip-

tic curve pairings. Our overall approach is to design a secret-sharing based MPC protocol

that efficiently supports basic elliptic curve operations (i.e., point addition and scalar mul-

tiplication) and elliptic curve bilinear pairing operations as fundamental building blocks.



126 Chapter 6

We build upon the SPDZ secret-sharing based MPC protocol [37, 173] to achieve the first

secret-sharing based MPC framework that seamlessly supports elliptic curve pairing opera-

tions as fundamental gate-level building-blocks with malicious security against a dishonest

majority of adversarial parties. A technical cornerstone of our framework is the round-

preserving upgradation of SPDZ from basic field operations to the significantly more com-

plicated elliptic curve operations, including pairings. Our framework allows us to directly

use standardized and open-source implementations of elliptic curve libraries [174–176],

thereby leveraging both the performance improvements/optimizations as well as the pro-

tections against evolving implementation-level attacks that such libraries usually offer. We

believe that this is a contribution of independent interest.

Efficient Two-Party PCI. We use our proposed MPC framework to design the following

provably secure yet practically efficient two-party PCI protocols:

• A two-party PCI-Any-DC protocol using the ECDSA signature scheme [168] – an

elliptic-curve-based digital signature scheme which is standardized and widely adopted

in multiple real-world applications including X.509 public key infrastructure in the

Internet, TLS [177], DNSSEC [178], etc. Moreover, ECDSA is a candidate sig-

nature scheme in verifiable credentials [1] which is one of the target applications

of PCI. Choosing ECDSA also allows us to use its standard implementation in the

OpenSSL [174] library for EC group operations. This naturally motivates designing

a PCI protocol supporting ECDSA-based certification of claims.

• A two-party PCI-All protocol using the BLS signature scheme [131, 170, 171]– an

elliptic-curve pairing-based digital signature that is popularly used in blockchain ap-

plications and is in the process of being standardized [179]. We design a PCI-All

protocol supporting BLS-based certification of claims that exploits the signature-

aggregation capabilities of BLS to perform efficient validation of certificates over all

of the public claims of each party.

The starting point of our protocols is the generic maliciously secure PCI protocol outlined

earlier, with several optimizations to obviate or minimize expensive elliptic curve opera-

tions inside the MPC protocol. In our ECDSA-based PCI-Any-DC protocol, we develop



6.1 Introduction 127

techniques that enable securely yet efficiently performing the expensive algebraic opera-

tions (such as field inversion) and non-algebraic operations (such finding the x-coordinate

of an elliptic curve point) required by the ECDSA verification algorithm outside the MPC

protocol. The protocol is then implemented using our proposed MPC framework, which

allows performing ECDSA signature validations while using all elliptic curve operations in

a black-box manner. We also discuss how to upgrade this protocol to full-fledged PCI-Any

where the claims are no longer disclosed publicly (see Section 6.4 for details).

Trivially extending the approach used in our ECDSA-based PCI-Any-DC protocol to

design a PCI-All protocol would require iterating through all of the public claims, and vali-

dating the signatures on these claims by a specific certifier. This results in a claim validation

complexity that grows with the number of claims. We overcome this challenge by design-

ing a PCI-All protocol using BLS-based signature-aggregation that only requires a single

(aggregate-)signature verification per certifier inside the MPC protocol. We introduce ad-

ditional optimizations that exploit the deterministic nature of the BLS signature to further

reduce the number of elliptic curve pairing operations inside MPC to just one per certifier,

which is then implemented in a black-box manner using our proposed MPC framework

over pairings.

Implementation and Evaluation. We extend MP-SPDZ [36] to implement our proposed

secret-sharing framework supporting elliptic curve operations including bilinear pairings.

For the black-box operations on elliptic curves we use OpenSSL [174] and RELIC [176]

libraries. We then implement ECDSA-based PCI-Any-DC and BLS-based PCI-All proto-

cols. We make the source code of our implementation available at https://github.

com/ghoshbishakh/pci for independent benchmarking. We provide a detailed anal-

ysis of the performance of the individual components of our MPC framework, followed by

the end-to-end performance evaluation of the protocols in realistic setups by placing par-

ties in three geographic regions across two continents. In an intercontinental WAN setup

with parties located in different continents, our PCI-Any-DC and PCI-All protocols execute

in less than a minute on input sets of size 40. This demonstrates the practicality of our

proposed solutions. We refer to Section 6.6 for details.

https://github.com/ghoshbishakh/pci
https://github.com/ghoshbishakh/pci


128 Chapter 6

6.2 Private Certifier Intersection (PCI)

In this section, we formally define Private Certifier Intersection (PCI). We begin by intro-

ducing some notations and background material. We subsequently formalize the function-

ality and security guarantees that a PCI protocol should satisfy.

General Notations. We write x ← χ to represent that an element x is sampled uniformly

at random from a set/distributionX . The output x of a deterministic algorithmA is denoted

by x = A and the output x′ of a randomized algorithmA′ is denoted by x′ ← A′. For a, b ∈
N such that a, b ≥ 1, we denote by [a, b] the set of integers lying between a and b (both

inclusive). We refer to λ ∈ N as the security parameter, and denote by poly(λ) and negl(λ)

any generic (unspecified) polynomial function and negligible function in λ, respectively.1

PCI Notations. Let ID be a set of identities corresponding to the certifiers. Given a claim

m ∈ M by a party P , a certifier with identity id can issue a certificate σ ∈ C, such that

there exists a relation R that satisfies the following:

R(id, σ,m) = 1 iff σ is a valid certificate by id on m

A natural instantiation of the certification process outlined above is a digital signature,

where the certificate issuance corresponds to the signing algorithm and the relation R cor-

responds to the verification algorithm, with σ being the signature on a claim m under the

signing key corresponding to id. Looking ahead, our proposed realizations of PCI protocols

in this chapter will use this digital signature-based instantiation of the certification process.

We now introduce some additional notations for ease of exposition, these notations will

be useful in understanding our definitions for PCI. Let S be a set of (identity, certificate,

claim) tuples of the form

S = {(idj, σj,mj) ∈ ID × C ×M}j∈[1,n]

where N is the number of tuples in the set S. We define the following projection functions

1Note that a function f : N → N is said to be negligible in λ if for every positive polynomial p,

f(λ) < 1/p(λ) when λ is sufficiently large.



6.2 Private Certifier Intersection (PCI) 129

on the set S:

id(S) := {id : ∃σ,m s.t. (id, σ,m) ∈ S}

m(S) := {m : ∃id, σ s.t. (id, σ,m) ∈ S}

m(S) := (mj)(idj ,σj ,mj)∈S

Here, m(S) is a list/multiset of the claims corresponding to each tuple in the set S.

6.2.1 Defining a PCI Protocol

We now formally define a PCI protocol in the two-party setting, which is the focus of this

chapter. Our definitions naturally extend to multiple parties, as discussed subsequently.

Two-Party PCI. A two-party PCI protocol Π involves parties P1 and P2, where each party

Pi for i ∈ {1, 2} inputs a tuple of the form inpi =
(
inpi,1, inpi,2

)
, where:

• The private input inpi,1 is a set of (identity, certificate, claim) tuples of the form

inpi,1 = {(idi,j, σi,j,mi,j) ∈ ID × C ×M}j∈[1,Ni]

where Ni is the number of tuples in inpi,1 from party Pi.

• The public input inpi,2 is a set of claims of the form {m̂i,j ∈M}j∈[1,N ′
i ]

, where N ′i is

the number of tuples in inpi,2 from party Pi.

Note that a party Pi can produce multiple certificates from the same certifier on same or

different claims. Additionally, a party Pi can also request certifications on the same claim

from multiple certifiers. Hence, in the most general setting, a party’s input could have mul-

tiple tuples with the common id or a common m. Also note that the public input for P1 is

known to P2 at the start of the protocol and vice versa.2

Remark. A couple of remarks on the definition follow:
2We assume that these sets are shared between P1 and P2 via some apriori mechanism that is not within

the purview of the PCI protocol itself.



130 Chapter 6

1. One could have a variant of PCI with the claims being private. This work considers

the above defined variant with the claims being public. We leave it to future work for

instantiating PCI with private claims.

2. Our definition lets a (corrupt) party provide claims in the public input that are dif-

ferent from those in the tuple in the private input. One could also restrict the public

input inpi,2 to be m(inpi,1), which is the expected behaviour of the honest parties.

At the end of the protocol Π, each party Pi receives as output a set of certifiers. In this

chapter, we consider different variations of (two-party) PCI protocols that produce different

kinds of output sets, that we outline below:

• Validate-Any: In this flavor of PCI protocol, denoted by PCI-Any, both parties P1

and P2 receive as output the set of certifiers outPCI-Any, such that an identity id ∈ out if
and only if both P1 and P2 have valid certificates on some m1 ∈ inpi,2 and m2 ∈ inpi,2,
respectively, such that both the certificates are issued by id. More formally, for each
i ∈ {1, 2}, we define the following Boolean predicate:

RPCI-Any,inpi(id) = 1 if and only if ∃m ∈ inpi,2 :

∃(id,m, σ) ∈ inpi,1 s.t. R(id,m, σ) = 1

Then we have

outPCI-Any(inp1, inp2) =
{
id ∈ id(inp1,1) ∩ id(inp2,1) :

RPCI-Any,inp1(id) = RPCI-Any,inp2(id) = 1
}

• Validate-Any with Disclosed Claims: We also consider a weaker variant of the
aforementioned validate-any PCI protocol (denoted by PCI-Any-DC), where the par-
ties additionally learn the following: (i) the claim mi,j corresponding to each tu-
ple (idi,j, σi,j,mi,j) ∈ inpi,1 for each party Pi, (ii) for each id in the output set of
certifiers outPCI-Any, each party learns the set of (public) claims on which the other
party has a valid certificate issued by id. Note that no information is revealed about
any (valid/invalid) certificates that the parties might have that are issued by some
id′ /∈ outPCI-Any. Formally, for each i ∈ {1, 2}, we define the function

minpi(id) =
{
m : ∃(id,m, σ) ∈ inpi,1 s.t. R(id,m, σ) = 1

}



6.2 Private Certifier Intersection (PCI) 131

Then the output set outPCI-Any-DC is described formally as follows

outPCI-Any-DC(inp1, inp2) =
({

m(inpi,1)
}
i∈[1,2] ,{(

id, {minpi(id)}i∈{1,2}
)
: id ∈ outPCI-Any(inp1, inp2)

})
PCI-Any-DC is relevant in most real-world scenarios since the parties would know

the claims of the counterparty that they want to validate, and vice versa. Moreover,

traditional VC interactions also work on disclosed claims (see Section 6.1).

• Validate-All: In this flavor of PCI protocol, denoted by PCI-All, both parties P1 and
P2 receive as output the set of certifiers outPCI-All, such that for each id ∈ outPCI-All, P1

and P2 have valid certificates issued by id on all of the (public) claims in their input
sets inp1,2 and inp2,2, respectively. More formally, for each i ∈ {1, 2}, we define the
following Boolean predicate:

RPCI-All,inpi(id) = 1 if and only if ∀m ∈ inpi,2 :

∃(id,m, σ) ∈ inpi,1 s.t. R(id,m, σ) = 1

Then we have

outPCI-All(inp1, inp2) =
{
id ∈ id(inp1,1) ∩ id(inp2,1) :

RPCI-All,inp1(id) = RPCI-All,inp2(id) = 1
}

6.2.2 Security of PCI

We now define the security guarantees expected of a PCI protocol in the two-party setting.

Informally, we require that in any PCI protocol Π, party P1 (resp. party P2) learns nothing

about the inputs of party P2 (resp. party P1) except what is revealed by the output out

of the protocol Π, and the sizes N1 and N2 of the input sets of P1 and P2. In the rest of

this section, we formalize this security guarantee using the simplified universal compos-

ability (SUC) framework due to Canetti, Cohen, and Lindell [172] in the real/ideal world

paradigm. We consider a dishonest majority in our definitions, wherein the adversary can

corrupt one of the two participating parties. For ease of exposition, we assume without loss

of generality that P1 and P2 are the corrupt party and the honest party, respectively.



132 Chapter 6

FPCI(mode ∈ {Any,Any-DC,All})

• For i ∈ {1, 2}, let the input of party Pi be inpi = (inpi,1, inpi,2), where

inpi,1 = {(idi,j , σi,j ,mi,j) ∈ ID × C ×M}j∈[1,Ni]

inpi,2 = {m̂i,j ∈M}j∈[1,N ′
i ]

The honest party P2 provides its input directly to FPCI, while the input of the corrupt party P1 is

provided to FPCI by the simulator S.

• FPCI computes outPCI-mode, where for mode ∈ {Any,Any-DC,All}, we have

outPCI-Any(inp1, inp2) =
{
id ∈ id(inp1,1) ∩ id(inp2,1) :

RPCI-Any,inp1(id) = RPCI-Any,inp2(id) = 1
}

outPCI-Any-DC(inp1, inp2) =
({

m(inpi,1)
}
i∈[1,2]

,{ (
id, {minpi(id)}i∈{1,2}

)
: id ∈ outPCI-Any(inp1, inp2)

})
outPCI-All(inp1, inp2) =

{
id ∈ id(inp1,1) ∩ id(inp2,1) :

RPCI-All,inp1(id) = RPCI-All,inp2(id) = 1
}

• FPCI sends
(
outPCI-mode, N1, inp1,2

)
to the simulator S.

• If S responds with an abort, FPCI aborts.

• Otherwise, FPCI sends to P1 and P2 the tuple(
outPCI-mode, N1, N2, inp1,2, inp2,2

)

Figure 6.3 Ideal functionality FPCI in the two-party setting

Ideal Functionality for PCI. We begin by formally defining the first component of our

simulation-based security definition, namely the ideal functionality FPCI, as described in

Figure 6.3. This functionality FPCI formally defines what each party is meant to learn at

the completion of the protocol.

The Real World. In the real world, the following participants engage in the protocol Π:

• The honest party P2 that receives its input from the environment Z and honestly

follows the protocol Π.



6.2 Private Certifier Intersection (PCI) 133

• A real-world adversary A that controls the corrupt party P1, and interacts with P2

and the environment Z .

• The environment Z that provides P2 with its input, and interacts with the real-world

adversary A. The environment Z also receives the output of P2, and eventually out-

puts a bit b ∈ {0, 1}.

The Ideal World. In the ideal world, the following participants interact with the ideal

functionality FPCI described in Figure 6.3.

• The honest party P2 that receives its input from the environment Z and directly for-

wards this input to FPCI.

• An ideal-world simulator S that sends inputs to FPCI on behalf of the corrupt party

P1 and receives back the corresponding output from FPCI. S also interacts with the

environment Z , with the aim of making this interaction indistinguishable from the

interaction between the real world A and the environment Z .

• The environment Z that provides P2 with its input, and interacts with the simulator

S. As in the real world, Z also receives the output of P2, and eventually outputs a bit

b ∈ {0, 1}.

For any two-party PCI protocol Π, any adversaryA, any simulator S, and any environment

Z , define the following random variables:

• realΠ,A,Z : a random variable that denotes the output of the environment Z after in-

teracting with the adversary A during an execution of the real-world protocol Π.

• idealFPCI,S,Z : a random variable that denotes the output of the environment Z after

interacting with the simulator S in the ideal world.

Definition 5 (Secure Two-Party PCI). A PCI protocol Π securely emulates the ideal func-

tionality FPCI described in Figure 6.3 if for any security parameter λ ∈ N and any proba-

bilistic polynomial time (PPT) adversary A, there exists a PPT simulator S such that, for



134 Chapter 6

any PPT environment Z ,

|Pr [realΠ,A,Z = 1]− Pr [idealFPCI,S,Z = 1]| ≤ negl(λ)

Multi-Party PCI. Our definition of two-party PCI naturally extends to the more general

setting of multi-party PCI involving n parties P1, . . . , Pn. We defer a formal treatment of

multi-party PCI to Appendix A.

Next we describe a generic approach to achieving a semi-honest secure PCI-mode pro-

tocol for mode ∈ {Any,Any-DC,All} given any semi-honest secure private set intersec-

tion (PSI) protocol. We then discuss on why the generic construction is practically infeasi-

ble and why we need concretely efficient PCI protocols in practice.

6.2.3 Generic Construction of PCI

In this section, we describe a generic approach to achieving a semi-honest secure PCI-mode

protocol for mode ∈ {Any,Any-DC,All} given any semi-honest secure private set intersec-

tion (PSI) protocol. We then discuss some challenges that we face when attempting to

upgrade this generic construction to provide malicious security.

Semi-Honest Secure PCI. We show how to construct a semi-honest secure multi-party

PCI-Any protocol πPCI-Any,Generic given a semi-honest secure multi-party PSI protocol πPSI.

The constructions of PCI-Any-DC and PCI-All follow analogously.

Suppose that each party Pi for i ∈ [1, n] inputs a tuple of the form inpi =
(
inpi,1, inpi,2

)
,

where inpi,1 = {(idi,j, σi,j,mi,j)}j∈[1,Ni]
and inpi,2 = {m̂i,j ∈M}j∈[1,N ′

i ]
. The parties pro-

ceed as described in Algorithm 5. At a high level, the protocol proceeds in two phases:

• Phase-1: Filtering. In this phase, each party filters its input set of (identity, cer-

tificate, claim) tuples to identify the subset of identities under which it has a valid

certificate on at least one public claim.

• Phase-2: PSI. The parties then run the secure PSI protocol with these filtered sub-



6.2 Private Certifier Intersection (PCI) 135

set of identities as inputs and output the resulting set as the output of the PCI-Any

protocol.

Correctness is immediate. Since semi-honest corruption precludes the possibility of mali-

cious behavior, semi-honest security of the overall protocol follows immediately from the

semi-honest security of the underlying PSI protocol. Finally, it is straightforward to appro-

priately modify this protocol for: (i) PCI-Any-DC by additionally including in the filtered

subset of identities the set of public claims for which each party has valid certificates under

each identity, and (ii) PCI-All by changing Phase-1 to identify the subset of identities under

which a party has a valid certificates on all of its public claims.

Algorithm 5: πPCI-Any,Generic from πPSI

1 for i := 1 . . . n do
2 Each party Pi locally computes a filtered set of identities as:

inp′i =
{
id ∈ id(inp1,1) : RPCI-Any,inp1(id) = 1

}
3 The parties P1, . . . , Pn then run the PSI

protocol πPSI on the filtered input sets (inp′1, . . . , inp
′
n) to compute an output set

outPSI =
⋂

i∈[1,n]

inp′i.

4 The parties output outPCI-Any := outPSI as the output of the PCI-Any protocol.

Challenges for Malicious Security. The key non-triviality of achieving a secure PCI pro-

tocol arises in the setting of malicious corruption, where the generic solution fails (even

assuming a maliciously secure PSI protocol) since we can no longer enforce that parties

execute Phase-1 honestly. We illustrate this in the simple setting of 2-party PCI. Suppose

that in Phase-1 of the generic solution, a malicious P1 chooses to include in its filtered

subset an identity id under which: (i) P1 does not have a single valid certificate, but (ii) P2

has one or more valid certificates. Then, the output of Phase-2 allows P1 to learn more in-

formation about the input set of P2 than is allowed by the ideal functionality FPCI. Clearly,

this is true even if the underlying PSI protocol were maliciously secure.



136 Chapter 6

“Tying” Validation to PSI. In order to enforce malicious security, we need to ensure that

for each id in the final result set, each party Pi proves to all of the other parties that its input

set contains a valid signature under id on some/all of its public claims. This is seemingly

hard to achieve efficiently while using certificate validation and the PSI protocol as indi-

vidual black-boxes since, prior to executing the PSI protocol, the parties do not know the

set of identities for which such a proof is required. The parties could choose to provide

proofs for all of their inputs, but this leaks more information about their input sets than al-

lowed by FPCI. To solve this issue, we require a mechanism that somehow “ties” certificate

validation to the subsequent PSI protocol, rather than treating these as individual phases.

Maliciously Secure PCI. To upgrade our generic solution for the semi-honest setting out-

lined in Algorithm 5 to a malicious security setting, we use the following natural approach

- run both phases of Algorithm 5 inside a maliciously secure MPC protocol [37, 162]. In

particular, Phase-1, which involves validation of claims and creation of filtered identity

sets for each party, now happens inside the MPC protocol, and is tied to Phase-2 where the

intersection of the identities from the parties is computed3.

Non-Black-Box Claim Validation. Our generic maliciously-secure MPC protocol is the-

oretically feasible, but is highly inefficient in practice for almost all widely used crypto-

graphically secure certification mechanisms. For example, the verification algorithms for

popular digital signature schemes such as ECDSA [168, 169] and BLS [131, 170, 171] rely

on elliptic curve-based finite-field arithmetic operations. Implementing such a verification

algorithm inside a maliciously secure MPC protocol would involve non-black-box usage

of the various elliptic-curve operations, which is likely to incur huge computational and

communication overheads in practice.

6.3 MPC for Elliptic Curve Pairings

As a fundamental building block of our proposed PCI protocols, we introduce a new secret-

sharing based MPC framework that is tuned for elliptic curve pairings. In this section, we

3Note that Phase-2 can be implemented a simple intersection functionality without the use of a private

version in PSI since it’s already run inside an MPC.



6.3 MPC for Elliptic Curve Pairings 137

describe this framework.

On Using Secret-Sharing based MPC. We begin by observing that both the ECDSA and

BLS signature schemes fundamentally rely on elliptic curve (EC)-based finite-field arith-

metic operations over Fp. Informally speaking, both standard EC operations (i.e., point

addition and scalar multiplication over the EC group) and pairing based operations (i.e.,

algebraic operations over the output group of an EC pairing) share a common algebraic

structure with the underlying field Fp (up to group homomorphisms). It turns out that

secret-sharing based MPC protocols offer us precisely the desired amount of flexibility to

manoeuvre over the algebraic structure of these groups without having to use the group rep-

resentation/operations in a non-black-box manner. In particular, our overall approach (at

a high level) is to design a secret-sharing based MPC protocol that supports EC oper-

ations and pairing operations as fundamental building blocks (similar in flavor to addi-

tion/multiplication “gates” in standard secret-sharing based MPC over Fp). This enables

us to directly use black-box implementations of such operations without having to express

them explicitly in terms of the underlying Fp operations.

On Choosing SPDZ. As a concrete instance of secret-sharing based MPC, we use the

SPDZ secret sharing based protocol [37] with malicious security against a dishonest ma-

jority of adversarial parties. The SPDZ protocol has been widely studied with several exten-

sions [26, 37, 173, 180], optimizations [167, 181], and robust open-source implementations

available [36, 182]. In addition, SPDZ naturally supports finite-field arithmetic operations

over Fp, which also suits our requirements and overall approach, as outlined above.

Black-Box Usage of Standard Elliptic Curve Libraries. One of our main contributions

is augmenting the SPDZ framework as well as the SPDZ open-source implementation to

seamlessly support basic elliptic curve operations as well as elliptic curve pairing opera-

tions as fundamental gate-level building-blocks. This allows us to directly use standardized

and open-source implementations of elliptic curve libraries [174–176]. This is crucial from

the point of view of both practical performance and real-world security, since we can im-

mediately leverage both the performance improvements/optimizations as well as the pro-

tections against evolving implementation-level attacks that such libraries usually offer. To

the best of our knowledge, such a framework was not available before, and this is an in-

dependent contribution since it enables an easy implementation of EC pairing-based MPC



138 Chapter 6

protocols.

Our Framework for MPC over EC Pairings. We now detail our framework for design-

ing secret-sharing based MPC protocols over EC pairings. Our framework can be broadly

divided into three-tiers, where each tier builds upon the preceding one. We exploit the

fact that each tier shares a common algebraic structure (up to group homomorphisms) to

progressively support more complicated operations.

• Tier-1: This tier of our framework supports the basic operations over Fp for some

prime p.

• Tier-2: This tier of our framework supports group operations over any generic group

G with order p. We use this tier to implement basic EC operations over the source

groups of an EC pairing (i.e., point addition and scalar multiplication), as well as

the group operations over the output group of the EC pairing (i.e., multiplication and

exponentiation).

• Tier-3: This tier of our framework supports EC pairing operations, subject to the

restriction that the pairing map e takes its inputs from two source groups G1 and G2,
both of which have order p, and produces an output in a target group GT , also of order

p.

6.3.1 Tier-1: MPC for Basic Fp Operations

Our starting point is a secret-sharing based MPC engine that implements the ideal function-

ality F [FP ] as described in Figure 6.4. For our applications, we use an MPC engine that

ensures security against both semi-honest and malicious corruption of parties; the latter

would necessitate an additional authentication mechanism to enforce honesty of operations

over secret-shared values. We use the representation [x]Fp
for any x ∈ Fp to denote that

the value x is secret-shared, i.e., no individual party has access to x, but each party has

access to some share of x (for simplicity, we will assume that this notation incorporates the

additional authentication components required to ensure malicious security). In the rest of

the chapter, we will simply use the notation [·] and drop the subscript Fp when denoting

secret-shared values over Fp (we will use explicit subscripts when denoting secret-sharing

over other groups, e.g. elliptic curve groups).



6.3 MPC for Elliptic Curve Pairings 139

F [FP ]

Init-F: On input (init, Fp) from all parties, the functionality stores (domain, Fp). A list of identifiers is

established for Fp, if not already done before.

Input-F: On input (inpF, Pi, varid, x) with x ∈ Fp from Pi and (inpF, Pi, varid, ϕFp) from all other

parties, with varid a fresh identifier, the functionality stores (varid, x) in the list of field identifiers.

Rand-F: On input (rand, varid) from all parties (if varid is not stored in memory), the functionality

generates a uniformly random a ∈ Fp and stores (varid, a) in the list of field identifiers.

Triple-F: On input (triple, varid1, varid2, varid3) from all parties (if none of the varidi are stored in

memory), the functionality generates a uniformly random a, b ∈ Fp and computes c = a · b and then stores

(varid1, a), (varid2, b) and (varid3, c) in the list of field identifiers.

Add-F: On command (addF, varid1, varid2, varid3) from all parties where varid1, varid2 are in the list of

field identifiers and varid3 is not, the functionality retrieves (varid1, x), (varid2, y) from the list of field

identifiers and stores (varid3, x+ y) in the list of field identifiers.

Mult-F: On command (multF, varid1, varid2, varid3) from all parties where varid1, varid2 are in the list

of field identifiers and varid3 is not, the functionality retrieves (varid1, x), (varid2, y) from the list of field

identifiers and stores (varid3, x · y) in the list of field identifiers.

Output-F: On input (outF, varid, i) from all honest parties (if varid is present in the list of field identifiers),

the functionality retrieves (varid, y) from the set of field identifiers and outputs it to the environment. The

functionality waits for an input from the environment. If this input is Deliver then y is output to all parties

if i = 0, or y is output to party Pi if i ̸= 0. If the adversarial input is not equal to Deliver then ϕ is output

to all parties.

Figure 6.4 Ideal functionality for MPC over field operations in Fp

Linearity-Preservation. Fundamentally, we require that the secret-shared representation [x]

is “linearity-preserving”, i.e., for any x, y, z, α, β ∈ Fp such that u = α · x + β · y + z,

given the secret shares [x] and [y] and the public values z, α, β, the parties can compute a

secret-sharing of u “for free” as

[u] = α · [x] + β · [y] + z.

Note that, in the case of malicious security, we also need this property to be preserved for

the authentication components.

Additional Functionalities. We additionally require two deterministic functionalities to be

supported by the MPC engine:



140 Chapter 6

1. A functionality that “opens” a secret shared value [x], i.e., reconstructs and distributes

the value x to all or a subset of the parties.

2. A functionality that “multiplies” secret shared inputs, i.e., given two secret-shared

inputs [x] and [y], produces a secret-shared output [z] such that z = x · y.

Finally, we require two randomized functionalities to be supported by the MPC engine:

1. A functionality that generates a secret-shared representation [a] for a randomly sam-

pled value a← Fp.

2. A functionality that generates secret-shared representations of uniformly random

multiplicative “triples”, i.e., it generates [a], [b] and [c] for a, b← Fp and c = a · b.

We refer to F [FP ] described in Figure 6.4 for a formal description of these functionalities.

Note that, for malicious security, we would need each of the above functionalities to also

preserve (or, in the case of opening, validate) the authentication components of the output

appropriately.

SPDZ-based Realization of Tier-1. While we can use any secret-sharing-based MPC

engine that securely realizes F [FP ], we choose to use SPDZ as a concrete realization, with

security against a malicious corruption of the majority of the parties. We briefly recall

here that, in addition to securely implementing F [FP ], SPDZ also implements a MAC-

check based authentication mechanism for secret-shared values [x] to achieve active se-

curity against malicious corruption of parties. We recall the details of this mechanism at

a very high level; the low-level details are not important for understanding our proposed

framework. Informally, in SPDZ, each party Pi for i ∈ [1, n] holds a sharing of a global

MAC-key α ∈ Fp (this sharing follows a slightly different mechanism; we omit the details

as our framework is oblivious to the same). Any value x ∈ Fp is shared as

[x] = (δ, (x1, . . . , xn) , (γ1(x), . . . , γn(x))) ,

where for each i ∈ [n], party Pi holds the tuple (xi, γi(x), δ) and where the following

invariant holds:

x =
∑
i∈[n]

xi, α · (x+ δ) =
∑
i∈[n]

γi(x).



6.3 MPC for Elliptic Curve Pairings 141

The SPDZ Opening Protocol. we briefly recall how the “opening” protocol in SPDZ al-

lows the parties to authenticate, via a MAC-check mechanism, that a secret-shared value

has been opened correctly. The opening protocol for a secret-shared value [x] involves the

following steps:

• Each party Pi, upon receiving a reconstructed value x′, uses its share αi of the global

MAC-key α, as well as γi(x) and δ, to compute σi = γi(x)− αi · (x′ + δ).

• Each party Pi then broadcasts a commitment Com(σi) to all the other parties.

• Finally, each party Pi opens the commitments {Com(σj)} received from {Pj}j ̸=i,

computes chk =
∑

j∈[n] σj , and aborts if chk ̸= 0.

We use the term partial opening to refer the procedure that just publicly reconstructs the

value x without going through the subsequent MAC-check procedure.

Suppose that a malicious adversary A manages to add an error ϵ during the reconstruction

phase, i.e., we have x′ = x + ϵ. Suppose also that the adversary A commits to a subset of

false {σ′j}j∈C values corresponding to the subset C ⊂ [n] of parties it corrupts. In order to

bypass the MAC-check, the adversary A must ensure that∑
j∈C

(σ′j − σj) = αϵ.

However, this happens with probability no greater than 1/p, since the global MAC value

α is uniformly random in Fp and (information-theoretically) unknown to A, and hence, A
cannot bypass the MAC-check protocol except with negligible probability.

Additional Functionalities in SPDZ. We note that the randomized functionalities for gen-

erating secret-shared representations of singleton values or multiplicative triples are imple-

mented by the offline phase of SPDZ [167]. We omit the low-level details of these function-

alities because they are not necessary to understand our framework and proposed protocols;

it suffices to state that our framework uses the native implementations of these functionali-

ties directly from SPDZ. We also directly use SPDZ’s implementation of the functionality

for multiplying secret-shared values, which is based on generating a random multiplicative



142 Chapter 6

F [G]

Init-G: On input (init,G) from all parties, the functionality stores (domain,G). A list of identifiers is

established for G, if not already done before.

Input-G: On input (inpG, Pi, varid, g) with g ∈ G from Pi and (inpG, Pi, varid, ϕG) from all other parties,

with varid a fresh identifier, the functionality stores (varid, g) in the list of field identifiers.

Op-G: On command (opG, varid1, varid2, varid3) from all parties where varid1, varid2 are in the list of

group identifiers and varid3 is not, the functionality retrieves (varid1, g), (varid2, h) from the list of group

identifiers and stores (varid3, g · h) in the list of group identifiers, where · is the group operation.

Exp-G-P: On command (expGP, varid1, g, varid2) from all parties where varid1 is in the list of field

identifiers, g ∈ G, and varid2 is a fresh identifier in the list of group identifiers, the functionality retrieves

(varid1, x) from the list of field identifiers and stores (varid2, gx).

Exp-G-S: On command (expGS, varid1, varid2, varid3) from all parties where varid1 is in the list of

field identifiers, varid2 is in the list of group identifiers, and varid3 is a fresh identifier in the list of group

identifiers, the functionality retrieves (varid1, x) from the list of field identifiers and (varid2, h) from the

list of group identifiers and stores (varid2, hx).

Output-G: On input (outG, varid, i) from all honest parties (if varid is present in the list of group

identifiers), the functionality retrieves (varid, g) from the set of group identifiers and outputs it to the

environment. The functionality waits for an input from the environment. If this input is Deliver then g is

output to all parties if i = 0, or g is output to party Pi if i ̸= 0. If the adversarial input is not equal to

Deliver then ϕ is output to all parties.

Figure 6.5 Ideal functionality for MPC over the group operations in G, which includes
basic EC operations and the operations over the output group of a pairing. We assume that
F [G] also includes all Tier-1 sub-functionalities in F [Fp], but we avoid re-writing them for
modularity.

triple and then using Beaver’s re-randomization technique. We refer to [37, 173] for the

details.

6.3.2 Tier-2: MPC over any Generic Group

In Tier-2, we aim to realize an MPC protocol over any generic group G with prime or-

der p. More concretely, we require the MPC protocol to implement the ideal functionality

F [G] as described in Figure 6.5. Such a protocol would allow us to support basic EC opera-

tions (i.e., point addition and scalar multiplication) over the source groups of an EC pairing,



6.3 MPC for Elliptic Curve Pairings 143

as well as the operations over the target group of the EC pairing (i.e., group multiplication

and exponentiation). We note that prior works [26,183] have discussed how to realize such

an MPC protocol specifically for plain EC groups; here, we generalize their treatment to

any group G of order p. In particular, our generalized treatment also encompasses the tar-

get group of an EC pairing, which is not an EC group but a multiplicative group over an

extension field of Fp.

As in Tier-1, we aim to design an MPC engine for Tier-2 that ensures security against

both semi-honest and malicious corruption of parties; the latter again necessitates some

additional authentication mechanism to enforce honesty of operations over secret-shared

group elements. We use the representation [g]G for any group element g ∈ G to denote

that g is secret-shared, i.e., no individual party has access to g, but each party has access

to some share of g (again, for simplicity, we will assume that this notation incorporates the

additional authentication components required to ensure malicious security).

Linearity-Preservation. In the context of G, we say that the representation [·]G is linearity-

preserving if for any g1, g2, g3 ∈ G and any α, β ∈ Zp such that h = gα1 · g
β
2 · g3, given

the secret shares [g1]G and [g2]G and the public values g3, α, β, the parties can compute a

secret-sharing of h “for free” as

[h]G = [g1]G
α · [g2]G

β · g3.

Once again, in the case of malicious security, we need this property to be preserved for the

authentication components.

Additional Functionalities. We additionally require three deterministic functionalities to be

supported by the MPC engine:

1. A functionality that “opens” a secret shared value [g]G , i.e., reconstructs and dis-

tributes the group element g to all or a subset of the parties.

2. A functionality that “exponentiates” a publicly available group element in G using a

secret-shared value in Zp, i.e., given a public g ∈ G and a secret-shared value [x] for

x ∈ Zp, produces a secret-shared output [h]G such that h = gx.



144 Chapter 6

3. A functionality that “exponentiates” a secret-shared group element in G using a

secret-shared value in Zp, i.e., given a secret-shared element [g]G for g ∈ G and a

secret-shared value [x] for x ∈ Zp, produces a secret-shared output [h]G such that

h = gx.

We refer to F [G] described in Figure 6.5 for a formal description of these functionalities.

Once again, for malicious security, we would need each of the above functionalities to

preserve (or, in the case of opening, validate) the authentication components of the output

appropriately.

Tier-2 Extension of SPDZ. As a concrete instantiation of F [G], we generalize the exten-

sions to SPDZ for basic EC operations proposed in [26, 183] to any generic group of order

p. We briefly recall the details of the approach, albeit in its generalized form. At a high

level, we exploit the homomorphic relationship between the additive group over Zp and the

group G, which yields a natural way to map the linearity-preserving property of SPDZ over

Zp to its extension over G. Informally speaking, for h = gx for some publicly available

generator g of G, let [h]G := g[x]. Then, observe that the linearity-preservation property in

G follows from the linearity-preservation property in Zp, albeit implicitly in the exponent

of the public group element g.

Concretely, any group element g ∈ G is shared as

[g]G = (δG, (g1, . . . , gn) , (γ1(g), . . . , γn(g))) ,

where for each i ∈ [n], party Pi holds the tuple (gi, γi(x), δG) ∈ G × G × G, and where the

following invariant holds:

g =
∏
i∈[n]

gi, (g · δG)α =
∏
i∈[n]

γi(g),

where α is the same global MAC-key as used in Tier-1.

Opening and MAC-Check in G. The opening protocol for a secret-shared group element

[g]G is also analogous to the corresponding protocol for Fp where each party Pi does the

following: (a) upon receiving a reconstructed value x′, computes σi = γi(g)
/
(g′ · δG)αi , (b)

broadcasts a commitment Com(σi) to all the other parties, and (c) opens the commitments



6.3 MPC for Elliptic Curve Pairings 145

{Com(σj)} received from {Pj}j ̸=i, computes chk =
∏

j∈[n] σj , and aborts if chk ̸= idG ,

where idG is the additive identity for the group G. We can use a very similar argument

as that in Tier-1 to prove that an adversary A cannot bypass this extended MAC-check

protocol over G, except with negligible probability.

Exponentiating a Public Element in G. As mentioned in prior works [183], exponentiating

a publicly available group element in G using a secret-shared value in Zp is immediate;

given a public group element g and a secret-sharing of x of the form

[x] = (δ, (x1, . . . , xn) , (γ1(x), . . . , γn(x))) ,

one can easily compute a secret-sharing of h = gx as

[h]G = g[x] :=
(
gδ, (gx1 , . . . , gxn) ,

(
gγ1(x), . . . , gγn(x)

))
.

Exponentiating a Secret-Shared Element in G. In order to exponentiate a secret-shared

group element [g]G using a secret-shared value [x], the parties use a protocol that nat-

urally extends SPDZ’s implementation of the functionality for multiplying secret-shared

values (based on generating a random multiplicative triple and then using Beaver’s re-

randomization technique). Concretely, the parties follows the following steps:

• Generate [a], [b] and [c] for a, b ← Zp and c = a · b using the triple-generation

functionality in Tier-1

• Locally compute [h1]G = g[b] and [h2]G = g[c] using the exponentiation algorithm

outlined above.

• Partially open the values ϵ = (x− a) and h3 = g/h1.

• Locally compute [h4]G = h
[a]
3 (using the exponentiation algorithm outlined above)

and h5 = hϵ
3.

• Locally compute [h]G = [h2]G ·
(
[h1]G

)ϵ · [h4]G · h5.

Note that the final local computation is allowed by the linearity-preserving property of the

secret-sharing over G; we omit the explicit details for simplicity.



146 Chapter 6

F [Pair]

Pair-G1-P: On command (pairGP, g1, varid1, varid2) from all parties where g1 ∈ G1, varid1 is in the list

of group G2 identifiers, and varid2 is a fresh identifier in the list of group GT identifiers, the functionality

retrieves (varid1, g2) from the list of G2 identifiers and stores (varid2, e(g1, g2)), where e is the pairing

function.

Pair-G2-P: On command (pairGP, varid1, g2, varid2) from all parties where varid1 is in the list of group

G1 identifiers, g2 ∈ G2, and varid2 is a fresh identifier in the list of group GT identifiers, the functionality

retrieves (varid1, g1) from the list of G1 identifiers and stores (varid2, e(g1, g2)), where e is the pairing

function.

Pair-S: On command (pairS, varid1, varid2, varid3) from all parties where varid1 is in the list of group G1
identifiers, varid2 is in the list of group G2 identifiers, and varid3 is a fresh identifier in the list of group

GT identifiers, the functionality retrieves (varid1, g1) from the list of G1 identifiers, (varid2, g2) from the

list of G2 identifiers and stores (varid3, e(g1, g2)).

Figure 6.6 Ideal functionality for MPC over the EC pairing operation with G1 and G2 as the
input groups and GT as the target group. We assume thatF [Pair] also includes all Tier-1 and
Tier-2 sub-functionalities in F [Fp] and F [G], but we avoid re-writing them for modularity.

Remark. To the best of our knowledge, a full-fledged implementation of this engine was

not publicly available (even for plain EC groups). Note that we use all group operations

in a black-box manner, which allows us to easily integrate with (i) any MPC framework

that supports secret-sharing based MPC protocols realizing the functionality F [Fp], and

(ii) any EC frameworks that implements EC operations including pairings. In this work,

we augment the open-source implementation in the MP-SPDZ framework [36] in a black-

box manner with an implementation of Tier-2 supporting EC operations over any group G
of order p, using OpenSSL [174] and RELIC [176] which are widely-used libraries for EC

operations (here RELIC supports EC pairings).

6.3.3 Tier-3: MPC over EC Pairings

We now build upon the infrastructure set up in Tier-1 and Tier-2 and design the MPC en-

gine to support EC pairing operations. In particular, for a bilinear pairing e : G1×G2 → GT ,

we start with Tier-2 instances for each of the groups G1, G2 and GT (all of which satisfy

linearity-preserving and support the operations outlined earlier), and realize the following



6.3 MPC for Elliptic Curve Pairings 147

three deterministic functionalities for EC pairings:

1. An EC pairing functionality that pairs a publicly available group element in G1 with

a secret-shared group element in G2, i.e., given a public g1 ∈ G1 and a secret-shared

group element [g2]G2 for g2 ∈ G2, outputs a secret-shared output [gT ]GT such that

gT = e(g1, g2).

2. An EC pairing functionality that pairs a secret-shared group element in G1 with a pub-

licly available group element in G2, i.e., given a secret-shared group element [g1]G1
for g1 ∈ G1 and a public g2 ∈ G2, produces a secret-shared output [gT ]GT such that

gT = e(g1, g2).

3. An EC pairing functionality that pairs a secret-shared group element in G1 with

a secret-shared group element in G2, i.e., given a secret-shared element [g1]G1 for

g1 ∈ G1 and a secret-shared group element [g2]G2 for g2 ∈ G2, outputs a secret-shared

output [gT ]GT such that gT = e(g1, g2).

We refer to F [Pair] described in Figure 6.6 for a formal description of these functionali-

ties. Once again, for malicious security, we would need each of the above functionalities

to preserve the authentication components of the output appropriately.

Tier-3 Extension of SPDZ. One of our technical contributions is an extension of the SPDZ

framework to support MPC protocols realizing F [Pair], which we describe here.

Pairing with One Secret-Shared Input. We begin by describing how to compute an EC pair-

ing when one of the input group elements is secret-shared and the other input group element

is public. We realize this by exploiting the bilinear property of the EC pairing. Recall that if

e : G1×G2 → GT is a bilinear pairing, then for any g1, h1 ∈ G1 and any g2, h2 ∈ G2, we have

e(g1 · h1, g2) = e(g1, g2) · e(h1, g2),

e(g1, g2 · h2) = e(g1, g2) · e(g1, h2).

Now, observe that to pair a publicly available group element in G1 with a secret-shared



148 Chapter 6

group element in G2, each party can just locally compute

[hT ]GT = e
(
h1, [h2]G2

)
,

and this yields a valid secret-sharing of pairing output hT because of: (a) the bilinear-

ity property of e as described above, and (b) the linearity-preservation property of the

secret-sharing mechanism over G2. Pairing a publicly available group element in G2 with

a secret-shared group element in G1 is analogously straightforward, wherein each party

locally computes

[hT ]GT = e
(
[h1]G1 , h2

)
.

Pairing with Two Secret-Shared Inputs. We now propose a protocol that allows the parties

to pair a secret-shared group element [h1]G1 with a secret-shared group element [h2]G2 , the

parties follows the following steps. The protocol is inspired by SPDZ’s implementation

of the functionality for multiplying secret-shared values (based on generating a random

multiplicative triple and then using Beaver’s re-randomization technique), but needs to be

carefully adapted to the setting of EC pairings. Concretely, in our proposed protocol, the

parties proceed as follows:

• Generate [a], [b] and [c] for a, b ← Zp and c = a · b using the triple-generation

functionality in Tier-1.

• Locally compute

[u1]G1 = g
[a]
1 , [u2]G2 = g

[b]
2 , [u3]G1 = g

[c]
1 ,

using the exponentiation algorithm for public group elements in the Tier-2 MPC en-

gine for G1 and G2.

• Partially open the values h3 = h1/u1 ∈ G1 and h4 = h2/u2 ∈ G2.

• Locally compute

[v1]GT = e
(
[u3]G1 , g2

)
, [v2]GT = e

(
h3, [u2]G2

)
[v3]GT = e

(
[u1]G1 , h4

)
, v4 = e(h3, h4).



6.4 PCI-Any-DC using ECDSA signature scheme 149

• Locally compute [hT ]GT = [v1]GT · [v2]GT · [v3]GT · v4.

Note that the final local computation is allowed by the linearity-preserving property of the
secret-sharing over GT ; we omit the explicit details for simplicity. To prove correctness,
it suffices to prove that hT = v1 · v2 · v3 · v4; correctness of the sharing again follows
immediately from: (a) the bilinearity property of e described above, and (b) the linearity-
preservation property of the secret-sharing mechanism over G1 and G2. Observe that

v1 · v2 · v3 · v4

= e (u3, g2) · e (h3, u2) · e (u1, h4) · e(h3, h4)

= e (gc1, g2) · e
(
h1 · g−a1 , gb2

)
· e

(
ga1 , h2 · g−b2

)
· e

(
h1 · g−a1 , h2 · g−b2

)
= e (g1, g2)

c · e (h1, g2)b · e (g1, g2)−ab · e (g1, g2)−ab · e (g1, h2)a

· e (h1, h2) · e (h1, g2)−b · e (g1, h2)−a · e (g1, g2)ab

= e(h1, h2) = hT

Importantly, the above computations of pairing of a publicly available and a secret-

shared group element, as well as pairing of two secret-shared group elements to obtain a

share of the pairing result involve the actual pairing computations limited to the local scope

of the parties. Therefore, the framework uses the EC pairing operations as well as other EC

group operations only as a black-box, performed by the parties locally.

6.4 PCI-Any-DC using ECDSA signature scheme

In this section, we describe a concrete instantiation of two-party PCI-Any-DC using the

ECDSA signature scheme. We subsequently discuss how to extend this scheme to support

PCI-Any and PCI-All.

Notations. Let the elliptic curve group G of prime order p be defined over a field Fp as a

set of points (x, y) ∈ Fp × Fp. Though the EC group G is an additive group of points over

the elliptic curve, we will continue to use the multiplicative notation to ensure uniformity



150 Chapter 6

throughout the chapter. Hence, we will denote point addition between two points Q1 and

Q2 as Q1 · Q2, and the scalar multiplication between a point Q and x ∈ Zp as Qx. Let

Q ∈ G be the generator of the group G (base point in standard EC parlance), and therefore

we have Qp = O, where O is the point at infinity (the identity element). For any Q′ ∈ G,

we use [Q′]G to denote the linearity preserving secret-sharing of Q′.

The ECDSA Signature Scheme. We briefly recall the key generation, signing, and verifi-

cation equations for ECDSA.

KeyGen(λ): On input a security parameter λ, the key generation algorithm samples a pri-

vate signing key x ← [1, p − 1], and computes the public verification key Y := Qx. The

algorithm outputs the pair (x, Y ).

Sign(x,m): On input a signing key x and a message m ∈ {0, 1}∗, the signing algorithm

does the following: (i) samples a random k ← [1, p − 1], (ii) computes R = (x, y) := Qk

(a random point on the curve), (iii) computes r = x mod p and s = k−1(H (m) + r · x)
mod p, where H : {0, 1}∗ → [0, p − 1] denotes a hash function, (iv) repeats (i)-(iii) until

r ̸= 0 and s ̸= 0. The algorithm finally outputs the signature σ = (r, s).

Verify(Y, σ,m): On input a verification key Y , a signature σ and a message m, the verifi-

cation algorithm computes u1 = H (m) · s−1 mod p, u2 = r · s−1 mod p and computes

R := (x′, y′) = Qu1 · Y u2 . The algorithm outputs 1 if (x′, y′) ̸= O and x′ = r, and outputs

0 otherwise.

Protocol overview. The starting point of our protocol is the generic maliciously secure

protocol outlined in the introduction where we have the certificate validation and creation

of the filtered sets of identities followed by the intersection of the sets from the two parties.

We note here that we could have a single certifier issue multiple certificates on multiple

different claims, or multiple certificates some of the same claims. However, we prescribe

the parties to select only one certificate from a single certifier on one claim, i.e., there is

a single (certificate, claim) pair for each certifier input to the protocol. We also expect an

honest party to only input valid certificates on its set of public claims (although this is not

a strict requirement for our protocol).

Optimizing Verify: Our main effort here is to reduce or obviate the non-algebraic operations



6.4 PCI-Any-DC using ECDSA signature scheme 151

Algorithm 6: PCI-Any-DC using ECDSA
1 Private inputs from P1: inp1,1 = [(Y1,ℓ, s

−1
1,ℓ ,m1,ℓ)]ℓ∈[1,N1]

Each Y1,ℓ is shared as [Y1,ℓ]G2
using Input-G, and each s−1

1,ℓ is shared as
[
s−1
1,ℓ

]
using Input-F.

2 Public inputs from P1: inp1,2 = [(r1,ℓ, R1,ℓ,m1,ℓ)]ℓ∈[1,N1]

3 Private inputs from P2: inp2,1 = [(Y2,ℓ, s
−1
2,ℓ ,m2,ℓ)]ℓ∈[1,N2]

Each Y2,ℓ is shared as [Y2,ℓ]G2
using Input-G, and each s−1

2,ℓ is shared as
[
s−1
2,ℓ

]
using Input-F.

4 Public inputs from P2: inp2,2 = [(r2,ℓ, R2,ℓ,m2,ℓ)]ℓ∈[1,N2]

5 P1 validates each R2,ℓ ̸= O and has-x coordinate r2,ℓ.

6 P2 validates each R1,ℓ ̸= O and has x-coordinate r1,ℓ.

7 ▷ Validate P1’s input signatures
8 for ℓ := 1 . . . N1 do
9 [u1,ℓ] := H (m1,ℓ) ·

[
s−1
1,ℓ

]
10 [v1,ℓ] := r1,ℓ ·

[
s−1
1,ℓ

]
11

[
C1

ℓ

]
G := Exp-G-P([u1,ℓ], Q) · Exp-G-S([v1,ℓ], [Y1,ℓ]G2

)
/
R1,ℓ

12 ▷ Validate P2’s input signatures
13 for ℓ′ := 1 . . . N2 do
14 [u2,ℓ′ ] := H (m2,ℓ′) ·

[
s−1
2,ℓ′

]
15 [v2,ℓ′ ] := r2,ℓ′ ·

[
s−1
2,ℓ′

]
16

[
C2

ℓ′

]
G := Exp-G-P([u2,ℓ′ ], Q) · Exp-G-S([v2,ℓ′ ], [Y2,ℓ′ ]G2

)
/
R2,ℓ′

17 ▷ Match certifier
18 The parties agree on public random values rnd1, rnd2 ← Zp.

19 for ℓ := 1 . . . N1 do
20 for ℓ′ := 1 . . . N2 do
21 Generate secret-shared randomness [rndℓ,ℓ′ ]← Rand-F.

22 [C]G := [Y1,ℓ]G
/
[Y2,ℓ′ ]G

23 [C ′]G :=
[
C1

ℓ

]
G ·

[
C2

ℓ′

]
G
rnd1 · [C]G

rnd2

24
[
C ′′

ℓ,ℓ′

]
G
:= Exp-G-S([rndℓ,ℓ′ ], [C ′]G)

25 Output-G(
[
C ′′

ℓ,ℓ′

]
G
)

26 If C ′′
ℓ,ℓ′ == O, then Output-G([Y1,ℓ]G)



152 Chapter 6

in the Verify algorithm. In addition to the additions and multiplications, Verify requires an

inverse operation in Fp and the extraction of the x-coordinate of an EC point from the point

description (which is a trivial task to do in the plaintext world but not so inside an MPC).

To do this, we make two observations. First, we note that the unforgeability of the sig-

nature scheme is retained if s−1 is input instead of s; given a signature (r, s), it is trivial

to compute (r, s−1) and hence the unforgeability guarantees are equivalent for (r, s) and

(r, s−1). This way the inverse can be done outside the MPC and the parties can provide the

corresponding s−1 as their secret inputs.

Second, in addition to r, we input the point R = (r, y) by calculating the y-coordinate,

and check that the signature verification procedure actually yields the point R (recall that

the original ECDSA signature verification algorithm first reconstructs the point R and then

extracts its x-coordinate r). If r and R were to be private inputs, the MPC algorithm would

have to check that the r is the valid x-coordinate of R to prevent maliciously constructed

inputs. We obviate this by making r and R public. Observe that, in the ECDSA signing al-

gorithm, the point R is a uniformly random point in the group G, thus R and its x-coordinate

r are statistically independent of the corresponding public key. In other words, the public

key is not revealed when r and R are provided, even if the universal set of public keys is

available to the adversary. We also note that a malicious adversary cannot forge signatures

by inputting an invalid point R′ since, given the x-coordinate r and the public description

of the elliptic curve group G, one can efficiently compute the two possible EC points the

form (r, y) in the group G, and either of these would match the point R reconstructed by

the verification algorithm if and only if the original signature (r, s) was valid. At this point,

we can perform certificate verification inside MPC using the operations in Tier-2 of our

proposed MPC engine.

Computing the intersection: We now perform the intersection of the sets of public keys

by subtracting the corresponding elliptic curve points (dividing in the multiplicative nota-

tion) and checking if it opens to the identity element (point at infinity). It is important to

hide the difference value if it is not the identity; otherwise we leak information about the

public keys which are not part of the output set, which is not an allowed leakage accord-

ing to our definition. So, we randomize the difference before opening while retaining the

identity value. Another optimization in our protocol is that we store the information on

the validity of the certificates in [C1
l ]Gs and [C2

l′ ]Gs and open them along with the variable



6.4 PCI-Any-DC using ECDSA signature scheme 153

[C]G storing the equality of public keys, as a random linear combination of three variables

corresponding to the validity of P1’s certificate, validity of P2’s certificate and the equality

of the public keys of the certifiers. This opens to the identity element if and only if all of

the three requirements are satisfied.

The detailed description of our PCI-Any-DC protocol for ECDSA is provided in Al-

gorithm 6. Here, each party inputs tuples of (identifier, certificate, claim) with the above

discussed modifications as its private input, and the corresponding claim and (r, R) for

each tuple as its public input. Note that the validation of P1’s certificates and P2’s certifi-

cates will be executed in parallel by the MPC algorithm. We describe the protocol in the

F [G]-hybrid model, i.e., we assume that each sub-functionality in F [G] has a secure in-

stantiation. This allows us to define and prove the protocols in a modular way. A concrete

instance of the protocol would use the SPDZ-based instantiation described in Section 6.3

to perform ECDSA signature validations while using all operations over the EC group G in

a black-box way.

Correctness and Security. Correctness of the protocol follows immediately. We state the

following theorem for the security of the protocol:

Theorem 4. Our proposed PCI-Any-DC protocol for ECDSA signatures as described in

Algorithm 6 securely emulates FPCI(PCI-Any-DC) (for the two-party setting).

Proof Overview. We defer a detailed formal proof of this theorem to Appendix B.1. We

provide a brief proof overview here. Informally, we construct a PPT simulator S that

simulates the view of a PPT environment Z , such that that this simulated view is compu-

tationally indistinguishable from the real view of Z . The crux of the proof is the following

observation: prior to the output stage in Line 25 of Algorithm 6, the entire computation of

the protocol is local. Thus, the environment’s view, up to this point, will not leak whether

inputs used by the honest player P2 are dummy inputs or the ones that the environment

actually provided (this guarantee follows immediately from the security of the underlying

MPC framework in the F [G] hybrid-model). Hence, the simulator S can assume entirely

dummy inputs on behalf of the honest party P2, and proceed with the simulation exactly as

in the protocol.

To handle openings of the C ′′ℓ,ℓ′ values (Line 25 of Algorithm 6), the simulator S invokes



154 Chapter 6

the ideal functionality FPCI(PCI-Any-DC) using the inputs of the corrupt party P1 and ob-

tains the output of the protocol outPCI-Any-DC(inp1, inp2). From the output, the S knows

precisely which (ℓ, ℓ′) tuples result in the opening of a C ′′ℓ,ℓ′ value that is equal to 0G , since

this corresponds to an intersecting public key Y . Based on this information, S ensures

consistent openings by suitably modifying the simulated share of C ′′ℓ,ℓ′ corresponding to the

honest party P2 by exploiting the algebraic structure of the EC group and its knowledge of

the MAC key α used in the simulation. Finally, to handle openings of Y1,ℓ values (Line 26

of Algorithm 6), it suffices for the simulator S to proceed exactly as in the real protocol.

This is because the public keys in the input of the corrupted party P2 are available to the

simulator S in the clear, and were shared by S exactly as in the real protocol. We refer to

Appendix B.1 for a detailed description of the simulation strategy.

Extension to PCI-Any. One can naturally upgrade the above PCI-Any-DC protocol to a

PCI-Any protocol that additionally guarantees privacy of the input claims for each party.

More concretely, the claims would be secret-shared across the participating parties instead

of being publicly available, and all operations on the input claims would have to be per-

formed inside the MPC protocol. While the extension is conceptually simple, it incurs some

additional costs. For instance, we can no longer directly use our proposed optimizations to

reduce or obviate the non-algebraic operations in the Verify algorithm, and we would incur

the additional cost of performing these operations inside the underlying MPC protocol. We

would also incur the additional cost of hashing the claims inside the MPC protocol (since

the claims would now be secret-shared as opposed to being publicly available). One could

use an MPC-friendly family of hash functions [184], but this would be non-compliant with

standardized implementations of ECDSA that typically do not use such hash function fam-

ilies. We leave it as an interesting future direction to investigate optimization strategies that

would allow performing the above operations efficiently (i.e., outside the MPC protocol)

while ensuring privacy of the input claims and maintaining compliance with standardized

ECDSA implementations.

Extension to PCI-All. The above PCI-Any-DC protocol can also be extended naturally to

PCI-All by iterating through all the claims to validate the certificates on these claims by a

specific certifier. To enable this, the private inputs will be ordered in a 2-D grid, where each

row corresponds to the certificates by a certifier on all the claims in inpi,1, and the protocol



6.5 PCI-All using BLS signature 155

needs to validate |inpi,1| certificates per certifier inside the MPC protocol. The complexity

grows with the number of claims which seems unavoidable since the ECDSA signatures

cannot be aggregated across different claims. Therefore in the next section, we introduce

an optimized PCI-All protocol using the BLS signature scheme [131] that only requires a

single signature verification per certifier inside the MPC protocol.

Extension to Multi-Party PCI-Any-DC. Finally, we refer to Appendix C for a discussion

on how to extend the above PCI-Any-DC protocol (and its upgradation to PCI-Any) from

the two-party to the multi-party setting.

6.5 PCI-All using BLS signature

This section provides a concrete instantiation of the PCI-All protocol using the BLS signa-

ture scheme [131, 170, 171]. At a high level, we use the aggregatable feature of BLS sig-

natures over different claims to minimize the number of signature verifications inside the

PCI-All protocol. Note however that BLS signature verification involves EC pairings, which

we handle in a black-box way using Tier-3 (Section 6.3) of our proposed MPC engine.

Notations. Let e : G1×G2 → GT be a non-degenerate, efficiently computable bilinear pair-

ing, where G1,G2 are elliptic curve groups and GT is a multiplicative group, all of prime

order p. Let Q1 and Q2 be generators of G1 and G2 respectively, and hence gT = e(Q1, Q2)

is a generator of GT .

The BLS Signature Scheme. We briefly describe the key generation, signing and verifi-

cation algorithms of the BLS signature scheme, followed by the algorithms for signature

aggregation (over multiple messages signed under the same verification key) and the veri-

fication of aggregate signatures.

KeyGen(λ): On input a security parameter λ, the key generation algorithm samples a pri-

vate signing key x← [1, p− 1] and computes the public verification key as Y = Qx
2 ∈ G2.

The algorithms outputs the key pair (x, Y ).

Sign(x,m): On input a signing key x and message m, the signing algorithm first computes



156 Chapter 6

M = H(m) ∈ G1 where H : {0, 1}∗ → G1. The algorithm then computes and outputs the

signature σ = Mx ∈ G1.

Verify(Y, σ,m): On input a verification key Y , a signature σ and a message m, the verifi-

cation algorithm outputs 1 if e(σ,Q2) = e(M,Y ), and 0 otherwise.

Signature aggregation: On input signature-message pairs {σi,mi}i∈[1,N ], the signature ag-

gregation algorithm produces an aggregated signature σ(m1,...,mN ) =
∏

i∈[1,N ] σi.

Aggregated signature verification: On input a verification key Y , an aggregated signature

σ(m1,...,mN ) and a list/multiset of messages (m1, . . . ,mN), the aggregated signature verifi-

cation algorithm outputs 1 if e(σ(m1,...,mN ), Q2) =
∏

i∈[1,N ] e(Mi, Y ) where Mi = H(mi).

The algorithm outputs 0 otherwise.

Remark. We note here that BLS signature aggregation is susceptible to a rogue public key

attack when aggregating signatures on the same message under different verification keys.

However, the attack is not applicable when aggregating signatures over multiple messages

signed under the same public verification key, and hence does not impact the security of

our proposed protocol.

Protocol overview. We follow the same generic approach as in our ECDSA-based proto-

col, with some optimizations to reduce BLS signature verifications inside the MPC pro-

tocol. We note here that we could have a single certifier issue multiple certificates on the

same claim for some of the claims. However, we prescribe the parties to select only one

certificate from a single certifier on each claim, i.e., there is a single (certificate, claim) pair

for each certifier per claim input to the protocol. We also expect an honest party to only

input valid certificates on its set of public claims.

Reducing Claim Validation: As mentioned earlier, trivially extending the approach used

in our ECDSA-based PCI-Any-DC protocol to design a PCI-All protocol would require it-

erating through all of the public claims, and validate the certificates on these claims by a

specific certifier. This results in a claim validation complexity that grows with the number

of claims, which is undesirable because the straightforward way of claim validation using

BLS signatures would require computing two bilinear pairings inside the MPC protocol per

validation, which is prohibitively expensive. Our main effort here is to reduce the number



6.5 PCI-All using BLS signature 157

Algorithm 7: PCI-All using BLS
1 P1 has inp1,1 = [(Y1,ℓ1 , σ1,ℓ1,ℓ2 ,m1,ℓ2)]ℓ1∈[1,N1,1],ℓ2∈[1,N1,2]

and inp1,2 = {m1,ℓ2}ℓ2∈[1,N1,2]

2 P2 has inp2,1 = [(Y2,ℓ1 , σ2,ℓ1,ℓ2 ,m2,ℓ2)]ℓ1∈[1,N2,1],ℓ2∈[1,N2,2]
and inp2,2 = {m2,ℓ2}ℓ2∈[1,N2,2]

3 Private inputs from P1: the aggregated tuples and the set of preempted pairings

(i) inp1,1 =
[(
Y1,ℓ, σ1,ℓ,M1

)]
ℓ∈[1,N1,1]

(ii) {z1,ℓ = e(M2, Y1,ℓ)}ℓ∈[1,N1,1]

where σi,ℓ =
∏

ℓ2∈[1,Ni,2]
σi,ℓ,ℓ2 and M i =

∏
ℓ∈[1,Ni,2]

H (mi,ℓ). Note that each Y1,ℓ is secret-

shared as [Y1,ℓ]G2
, each σ1,ℓ is secret-shared as [σ1,ℓ]G1

, and each z1,ℓ is secret-shared as [z1,ℓ]GT
.

4 Public inputs from P1: inp1,2.

5 Private inputs from P2: the aggregated tuples and the set of preempted pairings

(i) inp2,1 =
[(
Y2,ℓ, σ2,ℓ,M2

)]
ℓ∈[1,N2,1]

(ii) {z2,ℓ = e(M1, Y2,ℓ)}ℓ∈[1,N2,1]

Note that each Y2,ℓ is secret-shared

as [Y2,ℓ]G2
, each σ2,ℓ is secret-shared as [σ2,ℓ]G1

, and each z2,ℓ is secret-shared as [z2,ℓ]GT
.

6 Public inputs from P2: inp2,2.

7 for ℓ := 1 . . . N1,1 do
8

[
z′1,ℓ

]
GT

:= Pair-G2-P([σ1,ℓ]G1
, Q2)

9 for ℓ′ := 1 . . . N2,1 do
10

[
z′2,ℓ′

]
GT

:= Pair-G2-P([σ2,ℓ′ ]G1
, Q2)

11 The parties agree on public random r ← Zp.

12 for ℓ := 1 . . . N1,1 do
13 for ℓ′ := 1 . . . N2,1 do
14 Generate secret-shared randomness [rℓ,ℓ′ ]← Rand-F.

15 Each party locally computes:

16 [cℓ,ℓ′ ]GT
:=

(
[z1,ℓ]GT

/[
z′2,ℓ′

]
GT

)
·
(
[z2,ℓ′ ]GT

/[
z′1,ℓ

]
GT

)r

17
[
c′ℓ,ℓ′

]
GT

:= Exp-G-S
(
[rℓ,ℓ′ ], [cℓ,ℓ′ ]GT

)
18 Output-G

([
c′ℓ,ℓ′

]
GT

)
19 if c′ℓ,ℓ′ == 1T then
20 Output-G

(
[Y1,ℓ]G2

)



158 Chapter 6

of pairing operations inside the MPC protocol as far as possible. To do this, we first use

BLS signature aggregation over multiple claims signed under the same public verification

key. Concretely, suppose that the private input inpi,1 for each (honest) party Pi is ordered

in a 2-D grid of tuples of the form

inpi,1 = [(Yi,ℓ1 , σi,ℓ1,ℓ2 ,mi,ℓ2)]ℓ1∈[1,Ni,1],ℓ2∈[1,Ni,2]

with Ni,1 certifiers and Ni,2 claims to be validated, where row-ℓ1 contains certificates of the

form σi,ℓ1,ℓ2 on the claim mi,ℓ2 , signed by the certifier associated with the verification key

Yi,ℓ1 . The party Pi performs some pre-processing to aggregate the certificates in each row

using the BLS signature aggregation algorithm as:

σi,ℓ1 =
∏

ℓ2∈[1,Ni,1]

σi,ℓ1,ℓ2 , M i =
∏

ℓ2∈[1,Ni,1]

H (mi,ℓ2)

and uses an aggregated private input of the form

inpi,1 =
[(
Yi,ℓ1 , σi,ℓ1 ,M i

)]
ℓ1∈[1,Ni,1]

for the MPC protocol. This now reduces the number of pairing computations inside the

MPC protocol to two per certifier (required to verify each aggregated certificate); in partic-

ular, the complexity no longer grows with the number of public claims to be validated.

The next optimization involves further reducing the number of pairing computations

inside the MPC to one per certifier. Note that we could avoid the pairing computation

that requires pairing the public key with the aggregated claim-hash by having each party

pre-compute this and directly input it to the MPC protocol. Note, however, that doing

this naı̈vely would break the “unforgeability” guarantee of our protocol because a ma-

licious party could simply input the pairing of a (potentially) invalid signature with the

group generator Q2 to trivially satisfy the verification check. To counter this, we exploit

the uniqueness of BLS signatures for a given (key, claim) pair as follows: each party pre-

empts the output of pairing its own verification keys with the aggregated claim-hashes of

the other party (this is possible since the claims are public), which in the case of an inter-

secting certifier (i.e. when the verification keys are the same), is identical to the pairing

of the aggregated public claim-hashes with the other party’s verification key. This enables

performing certificate verification for one party by using the preempted pairing values com-



6.5 PCI-All using BLS signature 159

puted by the other party. This obviates the need for computing one of the pairings inside the

MPC protocol (since the preempted pairing computation is done outside the MPC), while

also preserving security of the end-to-end protocol.

Computing the intersection: In addition to certificate verification, the above step also en-

ables computing the intersection of the identity sets between the two parties. In particular,

we perform an equality check in GT by simply dividing the corresponding group elements,

and checking that the result opens to the identity element in GT . As in our ECDSA-based

protocol, it is important to hide the output of this computation if it is not the identity; other-

wise we leak information about the public keys which are not part of the output set, which

is not an allowed leakage according to our definition. So, we randomize the difference

before opening while retaining the identity value.

The detailed description of our PCI-All protocol for BLS signatures is provided in Algo-

rithm 7. Here, each party Pi inputs tuples of (identifier, aggregated certificate, aggregated

claim-hash) as its private input inpi,1, and the corresponding claims for each tuple as part of

its public input inpi,2 (for the honest parties, inpi,2 is expected to be simply the set of public

claims as in the definition of PCI-All in Section 6.2). Each party also inputs the preempted

pairing outputs as described earlier. We describe the protocol in the (F [Pair])-hybrid model,

i.e., we assume that each sub-functionality in F [Pair] has a secure instantiation. A concrete

instance of the protocol would use the SPDZ-based instantiation described in Section 6.3

to perform BLS signature validations while using all operations over the EC groups G1,G2
and the target group GT and the bilinear pairing e in a black-box way.

Correctness and Security. Correctness of the protocol follows immediately. We state the

following theorem for the security of the protocol:

Theorem 5. Our proposed PCI-All protocol for BLS signatures as described in Algorithm 7

securely emulates FPCI(PCI-All) (for the two-party setting).

We defer a formal proof of this theorem to Appendix B.2.

Extension to Multi-Party PCI-All. We refer to Appendix C for a discussion on how to

extend the above PCI-All protocol from the two-party to the multi-party setting.



160 Chapter 6

6.6 Evaluation

This section details our implementation of the EC building blocks, the ECDSA-based

PCI-Any-DC protocol, and the BLS-based PCI-All protocol. We independently benchmark

the individual components of our protocols (including the protocols for EC operations) in a

local server. We then evaluate the end-to-end performance of our PCI-Any-DC and PCI-All

protocols in a LAN, an intra-continental WAN, and an inter-continental WAN by spawning

parties over three geographic regions across two continents.

6.6.1 Implementation Details

Our implementation builds on the MP-SPDZ [36] framework to support the EC opera-

tions, including pairing described in Section 6.3. To the best of our knowledge, this is

the first implementation of an MPC protocol that supports all the EC group operations as

basic gates. In particular, we implement all the functionalities described in F [FP ], F [G],
and F [Pair]. The closest prior work [26] had implemented only two selected operations

– Output-G and Exp-G-P. Our implementation of ECDSA PCI-Any-DC variant uses the

standard OpenSSL (3.0) [174] library for EC operations. For the BLS PCI-All variant,

we use the RELIC toolkit [176] to compute pairings and the EC operations on the corre-

sponding groups. Both variants protect against malicious adversaries. As described earlier,

our implementation builds on the SPDZ protocol with MASCOT [167] pre-processing.

Analyzing the single-threaded CPU bottlenecks of the protocols, we have incorporated

multi-threading to parallelize parts that individual parties locally execute without involv-

ing any communication (such as steps 9, 10, 14, 15, 22, & 23 in Algorithm 6, and 8, 10,

& 16 in Algorithm 7). The source code of the implementation is made available here –

https://github.com/ghoshbishakh/pci.

6.6.2 Component wise performance analysis

The different types of operations involved in the protocols can be categorized into (i) offline

pre-processing, (ii) input sharing, (iii) local operations – performed by a party without any

https://github.com/ghoshbishakh/pci


6.6 Evaluation 161

Table 6.1 Throughput (operations per second) for Local EC Operations using RELIC and
OpenSSL

RELIC - Ed25519 OpenSSL - Secp256k1

Op-G 2,254,758 459,801

Exp-G-P 7,281 2,175

Table 6.2 Throughput (operations per second) for Local EC Operations on Pairing-friendly
Curves using RELIC

BLS12-381 BLS12-446 BN-254 BLS12-638

Op-G : G1 1,079,688 834,877 687,906 435,223

Exp-G-P : G1 523,529 404,051 296,905 217,412

Op-G : G2 6,453 4,535 4,228 1,782

Exp-G-P : G2 3,684 2,683 1,990 1,019

Pair-G-P : G1, G2 960 689 508 307

communication involved, e.g., Exp-G-P, (iv) communication dependent operations – which

require inter-party communication, e.g., Exp-G-S, (v) output – which includes MAC-check.

We perform experiments to analyze the performance of these different operations in terms

of throughput (operations per second) and the impact of network latency on them. We sepa-

rately compare the performance of local operations, followed by communication dependent

operations including pre-processing, input sharing and output.

Platform Used. We used a workstation with dual Intel Xeon Gold 5118 2.30GHz CPUs,

with 24 cores, and having 128 GB RAM. The system runs Ubuntu 18.04 operating system

with Linux kernel version 4.15.

Local Operations. We start by benchmarking the local EC operations namely Op-G (point

addition) and Exp-G-P (scalar multiplication with a point) separately for OpenSSL and

RELIC. The throughput values (using a single thread) depicted in Table 6.1 make it evident

that the performance of RELIC with Ed25519 [185] curve is significantly better than that

of OpenSSL with Secp256k1 [186] curve. Nevertheless, we use OpenSSL for our ECDSA-

based implementation of PCI-Any-DC since it one of the most widely-used libraries imple-

menting the ECDSA algorithm [187, 188]. Following this, we evaluate the performance

of EC operations on pairing-friendly curves with RELIC and carry out the experiments on



162 Chapter 6

Table 6.3 Throughput (operations per second) for Operations Requiring Communication

RTT 1ms RTT 100ms

Pre-processing 967 267

Input 261 245

Output 457 363

Single

Threaded

Multi

Threaded

Single

Threaded

Multi

Threaded

Exp-G-S : G1 547 1,280 473 1,121

Exp-G-S : G2 277 554 257 554

Exp-G-S : GT 166 322 164 314

Pair-S: G1, G2 80 417 78 409

four different curves, namely BLS12-381 [189–191], BN-254 [192], BLS12-446 [193], and

BLS12-638 [191]. Table 6.2 summarizes the throughput for Op-G, Exp-G-P, and Pair-G-P

for the above four curves. We observe that Op-G and Exp-G-P operations on G2 are much

slower compared to that on G1, with Pair-G-P being the slowest operation by far. Among

the curves benchmarked, BLS12-381 performs the best, and therefore we select this for the

end-to-end experiments in Section 6.6.3.

Operations Requiring Communication. Moving to the more interesting benchmarks of

the operations involving inter-party communication, namely Pre-processing, Input, Out-

put, and EC operations Exp-G-S and Pair-S, we use two different setups – (a) a LAN setup

with RTT between two parties being about 1ms, and (b) an emulated WAN setup with RTT

of 100ms. In order to vary the link latency, we use the tc tool [194] to manipulate the

loopback interface. Table 6.3 shows the throughput observed in the single threaded and

multi-threaded implementation for Exp-G-S and Pair-S. We observe that Pre-processing

slows down significantly with increasing latency, so is Output but to a lesser extent. The

throughput values of Exp-G-S and Pair-S operations slightly drop with increasing latency

but, even with a high RTT of 100ms, multithreading significantly increases the throughput,

indicating that CPU is a major bottleneck for these operations. This validates the expec-

tation since Exp-G-S and Pair-S are performed in batches and involve only one round of

communication in which a batch of tuples are partially opened (see Section 6.3.2 and 6.3.3),

thereby limiting the impact of network latency. However, if the batches are split (when a



6.6 Evaluation 163

single batch becomes too large to handle), the impact of the communication latency will

increase. Note that we perform this in a setup where bandwidth is sufficient enough to not

be a bottleneck, and therefore, does not impact the benchmarks.

6.6.3 End-to-end performance analysis

In order to get real world performance metrics, we evaluate our implementations by plac-

ing the parties in the (a) same region – LAN, (b) different regions in the same continent –

Continental WAN (WAN), and (c) different continents – Inter-continental WAN (ICWAN).

Platform Used. To gauge the practical performance of PCI on consumer hardware, we car-

ried out the experiments on (i) AWS EC2 c6i.xlarge virtual machine instances with

only 4 vCPUs and 8 GB RAM. The instances were running the Ubuntu 22.04 operating

system and were connected with a network having up to 12.5 Gbps bandwidth [195]. In

addition, we evaluated PCI-Any-DC on more powerful hardware - (ii) AWS EC2 c6i.

12xlarge virtual machine (VM) instances with 48 vCPUs and 96 GB RAM, connected

with a network having up to 18.75 Gbps bandwidth [195].

For the ICWAN setup, we used instances located in Asia (ap-south-1) and North America

(us-east-1), with an RTT latency of about 186ms. For WAN, we use two instances in the

USA, one in east coast (us-east-1), and another in the west coast (us-west-1) with an RTT

latency of about 62ms. For the LAN setup, we spawned the two parties in two separate

VMs in the same data center (ap-south-1).

Overall Latency of PCI-Any-DC on consumer hardware. First, we evaluate the end-to-

end ECDSA and BLS-based PCI-Any-DC protocols using the less powerful hardware, with

each party’s input set sizes varying from 10 to 1000. Here, the BLS PCI-Any-DC refers to

the BLS PCI-All (Algorithm 7) with the parties using a single claim and its corresponding

signature instead of the aggregated claim and signature. Figures Figure 6.7a, Figure 6.7b,

and Figure 6.7c show the mean and standard deviations of the latency in LAN, WAN, and

ICWAN setups, respectively, taken over multiple runs. The y-axis shows the time taken in

seconds in a logarithmic scale. For the input sets of size 10 from each party, the mean time

taken is about 0.69 seconds, 8.8 seconds, and 26.4 seconds for the ECDSA PCI-Any-DC



164 Chapter 6

10 20 50 100 200 500 1000
Size of each input set

1

10

100

1000

5000

ti
m

e 
(s

)

ECDSA-PCI-ANY-DC
BLS-PCI-ANY-DC

(a)

10 20 50 100 200 500 1000
Size of each inpu  se 

1

10

100

1000
4000
8000

 i
m

e 
(s

)

ECDSA-PCI-ANY-DC
BLS-PCI-ANY-DC

(b)

10 20 50 100 200 500 1000
Size of each inp t set

1

10

100

1000

16000

ti
m
e 
(s
)

ECDSA-PCI-ANY-DC
BLS-PCI-ANY-DC

(c)

10 20 50 100 200 500 1000
Size of each input set

1

10

100

1000

ti
m

e 
(s

)

ECDSA-PCI-ANY-DC
BLS-PCI-ANY-DC

(d)

10 20 50 100 200 500 1000
Size of each inp t set

1

10

100

1000

6000
ti
m
e 
(s
)

ECDSA-PCI-ANY-DC
BLS-PCI-ANY-DC

(e)

10 20 50 100 200 500 1000
Size of each inp t set

1

10

100

1000
4000
12550

ti
m
e 
(s
)

ECDSA-PCI-ANY-DC
BLS-PCI-ANY-DC

(f)

Figure 6.7 (a), (b) and (c) depict latency (in logarithmic scale) of ECDSA PCI-Any-DC vs
BLS PCI-Any-DC in LAN, WAN and ICWAN setups respectively on consumer hardware.
(d), (e) and (f) depict the latency (in logarithmic scale) in LAN, WAN and ICWAN setups
respectively on powerful hardware.

protocol in LAN, WAN, and ICWAN, respectively. In such a setting, the BLS PCI-Any-DC

protocol takes 0.62 seconds, 5.9 seconds, and 16.6 seconds respectively. This is better than

the ECDSA variant, albeit by a small margin because the ECDSA protocol requires addi-

tional Exp-G-S operations in the signature validation steps (lines 11 and 16 of Algorithm 6),

which is not required in the BLS variant. Exp-G-S operation requires communication and

hence is significantly expensive as analyzed in detail in Section 6.6.2. For 1000 inputs, both

ECDSA and BLS PCI-Any-DC takes less than 84 minutes, 149 minutes, and 316 minutes

in LAN, WAN, and ICWAN, respectively. Notably, in practice, the size of the centralized

trusted set of all CAs on the web is around 200 [30]; therefore, we expect the plausible

set of certifiers for a party to be less than 200. Here the number of certifiers do not imply

the global set of all possible certifiers, instead it is the number of certifiers that have issued

certificates for a given claim to a user. For 200 inputs, both ECDSA and BLS PCI-Any-DC

takes less than 3.5 minutes, 7 minutes, and 15 minutes in LAN, WAN, and ICWAN, respec-

tively. This is improved further by using more powerful hardware, which we report next.



6.6 Evaluation 165

0.0 0.2 0.4 0.6 0.8 1.0
Share of time

IC WAN
C WAN

LAN

P ep ocessing
Input
Comm. ops.

Local Ops.
Open and
MAC check

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Share of time

IC WAN
C WAN

LAN

P ep ocessing
Input
Comm. ops.

Local Ops.
Open and
MAC check

(b)

Figure 6.8 (a) and (b) Represents latency of different phases of the ECDSA PCI-Any-DC
and BLS PCI-Any-DC respectively with 100 inputs from each party.

Overall Latency of PCI-Any-DC on powerful hardware. We repeat the same set of ex-

periments as mentioned above on powerful hardware. The mean (and standard deviation)

of the latency in LAN, WAN, ICWAN setups are presented in Figure 6.7d, Figure 6.7e, and

Figure 6.7f respectively. The y-axis shows the time taken in seconds in logarithmic scale. In

the LAN setting with 1000 inputs from each party, both ECDSA and BLS PCI-Any-DC take

about 24 minutes, which is ∼ 71% less than when using less powerful hardware. However,

when the network latency increases in the ICWAN setting, the advantage of more CPU and

memory resources reduces. For 1000 inputs from each party, ECDSA PCI-Any-DC takes

around 211 minutes and BLS PCI-Any-DC takes 209 minutes. This is ∼ 33% less than

when using less powerful hardware where both ECDSA and BLS variant take less than 316

minutes.

Phase-wise Latency Analysis. Next we analyze the latency of different phases of the pro-

tocols. Figure 6.8a and 6.8b represent the shares of time taken by different phases, namely

pre-processing, input sharing, communication dependent operations, local operations and

output (with MAC check) for PCI-Any-DC and PCI-All respectively, with 100 inputs from

each party. This experiment is carried out on the more powerful virtual machine instances.

We observe that pre-processing, output and input sharing phases have the greatest impact

with increases in latency from LAN to ICWAN. The Exp-G-S, and Pair-S operations (de-

noted as Comm. ops. in the figure) on the other hand are relatively stable with varying

latency, but still take the largest share of the entire runtime for our input sizes. Local op-

erations are the cheapest as expected, and their impact on the end-to-end latency drops to



166 Chapter 6

10 20 50 100 200 500 1000
Size of each inpu  se 

0.1

1.0

10.0

100.0

Co
m

m
un

ic
a 

io
n 

(G
B) ECDSA-PCI-ANY-DC

BLS-PCI-ANY-DC

(a)

10 20 50 100 200 500 1000
Size of each input  et

1

10

100

1000

7000

M
ax

 M
em

or
y 
(M

B)

ECDSA-PCI-ANY-DC
BLS-PCI-ANY-DC

(b)

LAN WAN ICWAN
0

50

100

150

200

250

300

ti
m

e 
(s

)

ECDSA 1 Output
ECDSA 100 Outputs
BLS 1 Output
BLS 100 Outputs

(c)

Figure 6.9 (a) and (b) represents total communication and maximum memory used
respectively (in logarithmic scale) by ECDSA and BLS PCI-Any-DC . (c) presents the
latency of PCI-Any-DC with different output intersection sizes.

insignificant percentage shares as latency increases.

Communication and Memory Overhead of PCI-Any-DC. We observe that the volume

of data communication across parties is deterministic and is defined by the size of their

input sets as expected. Hence, there are no variations across the different runs and across

LAN, WAN, and ICWAN. We report the communication bandwidth required for different

input sizes in Figure 6.9a. With input size of 10 from each party, the total volume of data

communicated is 22 MB for ECDSA and 25 MB with BLS PCI-Any-DC. With input sizes

of 1000, the total communication goes up to 152.8 GB and 153.4 GB for ECDSA and

BLS PCI-Any-DC, respectively. Unlike data communication overhead where ECDSA and

BLS variants are close, the memory consumption of BLS is consistently higher as depicted

in Figure 6.9b. For 1000 inputs, ECDSA PCI-Any-DC requires around 3.4 GB memory

(maximum usage during the runtime), whereas the BLS variant uses around 6.8 GB.

Latency of PCI-Any-DC with varying output size. We evaluate the impact of varying

overlap in the input certifier sets of the parties implying varying size of output intersection

set. Figure 6.9c represents the end-to-end latency of both ECDSA and BLS PCI-Any-DC

while keeping the number of input from each party constant at 100, and varying the output

size from 1 to 100 using consumer hardware setup. We observe that compared to the output

size 1, the end-to-end latency for 100 outputs is higher by a very small margin on an aver-

age in all the settings, namely, LAN, WAN, and ICWAN. This is because of the differences

in the number of outputs from the protocol that has to be opened (line 26 of Algorithm. 6,



6.6 Evaluation 167

1 10 20 50 100
Number of claims

0

50

100

150
ti

m
e 

(s
)

ECDSA-PCI-ALL
BLS-PCI-ALL

(a)

1 10 20 50 100
Number of claims

0

100

200

300

400

ti
m

e 
(s

)

ECDSA-PCI-ALL
BLS-PCI-ALL

(b)

1 10 20 50 100
Number of claims

0

200

400

600

800

 i
m

e 
(s

)

ECDSA-PCI-ALL
BLS-PCI-ALL

(c)

1 10 20 50 100
Number of claims

0

1000

2000

3000

Co
m

m
un

ic
a 

io
n 

(M
B) ECDSA-PCI-ALL

BLS-PCI-ALL

(d)

1 10 20 50 100
Number of claims

0

100

200

300

400

500

M
ax

 M
em

or
y 

(M
B) ECDSA-PCI-ALL

BLS-PCI-ALL

(e)

Figure 6.10 (a), (b) and (c) depict latency of ECDSA PCI-All vs BLS PCI-All with 100
certifiers and 1 to 100 claims as input from each party in (a) LAN (b) Continental WAN (c)
Inter-continental WAN setups respectively using consumer hardware. (d) and (e) presents
the total data communicated and maximum memory consumption of PCI-All respectively.

and line 20 of Algorithm. 7). We note, however, that no additional information is leaked

outside what is permitted by the definition of PCI-Any-DC (Section 6.2) from the difference

in the latency, since the intersection set is already known to the parties one step prior to this

opening phase (line 25 of Algorithm. 6, and line 18 of Algorithm. 7).

Comparing Latency of BLS PCI-All and ECDSA PCI-All.
In order to evaluate the gains of using BLS signature aggregation for PCI-All over the

ECDSA implementation, we use a (somewhat artificial) construction of ECDSA-based

PCI-All which iterates through all the claims to validate the certificates on them (see Section

6.4). We evaluate the end-to-end latency on consumer hardware by keeping the input set

size of each party constant at 100, and increasing the number of claims from 1 to 100. The

results in Figure 6.10a, Figure 6.10b, and Figure 6.10c depict the mean and the standard

deviation of the overall latency in LAN, WAN and ICWAN setups, respectively, taken over

multiple runs. While the BLS PCI-All consistently takes about 50 seconds, 115 seconds and



168 Chapter 6

250 seconds for any number of claims (from 1 to 100) in LAN, WAN, and ICWAN setups,

respectively, the time taken by ECDSA PCI-All gradually increases with the increase in the

number of claims. ECDSA PCI-All takes on an average 188 seconds, 380 seconds, and 748

seconds for 100 claims in LAN, WAN and ICWAN, respectively. This clearly highlights

the gains of using BLS construction of PCI-All.

Communication and Memory Overhead of PCI-All. The volume of data communicated

between the two parties for the above scenario is depicted in Figure 6.10d. With increasing

number of claims, the communication overhead increases for ECDSA PCI-All, whereas it

stays constant for BLS PCI-All which is the expected outcome. For 100 claims, the vol-

ume of data communicated by ECDSA PCI-All is 3333 MB, and by BLS PCI-All it is 1658

MB. Memory consumption of ECDSA PCI-All also increases with the increasing number

of claims as represented by Figure 6.10e. For 100 certifiers, with 100 claims for each party,

the memory usage by ECDSA PCI-All is about 268 MB, and the same by the BLS variant is

345 MB. Overall, the memory consumption overhead of the BLS implementation is more

than the ECDSA implementation for up to a reasonable number of claims such as 100.

6.7 Summary

Enabling parties to establish trust by inferring their common certification authorities with-

out revealing their other respective certifiers will emerge as a key privacy goal in any ar-

chitecture built on decentralized identities and verifiable claims, including Web 3.0. In this

chapter, we introduced Private Certifier Intersection (PCI) – a cryptographic primitive that

allows mutually distrusting parties to establish a trust basis for cross-validation of claims

if they have one or more trust authorities (certifiers) in common. We formalized the se-

curity guarantees of PCI and proposed two provably secure and practically efficient PCI

protocols supporting validation of digital signature-based certificates: a PCI-Any protocol

for ECDSA-based certificates and a PCI-All protocol for BLS-based certificates. Along the

way we have introduced a novel framework for efficient secret-sharing-based MPC over

elliptic curve pairings. We have implemented and benchmarked our PCI solutions to show-

case their practical efficiency.



6.7 Summary 169

Our work gives rise to many interesting open questions. We leave it open to study PCI

in the setting where claims are private. We also leave it as an open question to define and re-

alize variants of PCI that outputs a priority list of certifiers. Designing practically efficient

PCI protocols supporting other widely used cryptographic signature schemes, including

quantum-safe schemes, is another challenging open question.





Chapter 7

Conclusion and Future Work

The trend in the adoption of blockchain technology toward enterprise business use cases

is a result of its strong decentralization guarantees, which enforce transparency and au-

ditability. Multiple stakeholders form permissioned DLT networks collaborating toward

their collective business objectives while not relying on any central trusted authority. To-

day’s permissioned consortium DLT network setups work in isolation with no means of

communicating with any external entity. However, enabling interoperability between a

DLT network and a separate entity (e.g. another DLT network or an individual / organiza-

tion) is challenging since the consortium’s distributed multi-party trust must be maintained

during interoperation. This thesis introduces methods and apparatus for enabling interop-

eration between different consortium blockchain networks, as well as between consortium

networks and other entities outside the consortium boundary.

This thesis first presents a public-private interoperability interface with safety and live-

ness guarantees. Through a proof-of-concept implementation of a decentralized cloud fed-

eration, we show how a permissioned blockchain network of service providers can dispense

services to its end users. This public-private interoperability interface, for the first time, en-

ables an end-to-end decentralized supply chain where different business, as well as their

end-consumers, communicate and coordinate without any centralized trusted authority.

Next, we address the issue of different isolated permissioned networks, which also need

to interoperate. While private-private blockchain interoperability protocols exist, we ad-

171



172 Chapter 7 Conclusion and Future Work

dress one of their key limitations, which is cross-chain identity configuration. We leverage

the DID and VC concepts for designing a decentralized identity management infrastruc-

ture to enable different permissioned networks to exchange their identities in a trustworthy

manner. Following up in this direction, we explore the problem of privacy-preserving trust

negotiation across different permissioned DLTs. We present two solutions for the same,

one involving the active participation of the trust anchors, while the other one is based on

secure multi-party computation that does not require the trust anchors’ participation. In an

attempt to generalize the problem of privacy-preserving trust negotiation, even outside the

scope of DLTs, we define the problem of Private Certifier Intersection. Through a novel

extension of SPDZ MPC protocol for elliptic curve pairings, we devise efficient solutions

for this problem. From a bird’s-eye view, the contributions of this thesis allow isolated

blockchain networks to connect and communicate across themselves and other entities.

7.1 Directions of Future Work

In this section, we look into some of the potential future directions that have opened up

with the insights gained from the thesis.

7.1.1 Protocols for Blockchain Network Discovery

Interoperability protocols make otherwise isolated blockchain networks capable of commu-

nicating with one another. However, an evolving system of service-providing blockchains

coordinating toward more complex business goals can only be realized if there are mech-

anisms through which such DLT networks can be discovered. A DLT discovery protocol,

just like the DNS of the internet, would remove the burden of the manual and ad-hoc pro-

cess of network configuration. The combination of interoperability protocols along with

the discovery protocols could potentially pave the way toward a decentralized internet of

blockchains.



7.1 Directions of Future Work 173

7.1.2 Blockchain Network Identifier

Designing a blockchain discovery protocol has an essential prerequisite, – uniquely identi-

fying a DLT network. A blockchain network identifier must be devised to uniquely address

a blockchain network as a single entity. Such an identifier has to capture the evolving struc-

ture of blockchains over time without altering the address. A governance system has to be

designed that would enable the current stakeholders of a DLT network to be in control of

its identifier, while allowing new members to join the network and old members to leave.

7.1.3 Efficient Trust Negotiation Protocols

Trust negotiation is the centerpiece of any decentralized identity management system. This

thesis introduces protocols for privacy-preserving trust negotiation that are efficient enough

for real-world applications. However, the performance of these protocols is limited by the

inherent complexity of any secure multi-party computation technique. More efficient pro-

tocols for secure privacy-preserving trust negotiation is an exciting open direction to be

explored.



174 Chapter 7 Conclusion and Future Work



Bibliography

[1] M. Sporny, D. Longley, and D. Chadwick, “Verifiable credentials data
model v1.0,” 2019, (Last accessed: September 7, 2023). [Online]. Available:
https://w3c.github.io/vc-data-model/

[2] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,” 2008, (Last
accessed: September 7, 2023). [Online]. Available: https://bitcoin.org/bitcoin.pdf

[3] M. Belotti, N. Božić, G. Pujolle, and S. Secci, “A vademecum on blockchain
technologies: When, which, and how,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 4, pp. 3796–3838, 2019.

[4] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum project yellow paper, 2014, (Last accessed: September 7, 2023).
[Online]. Available: https://ethereum.github.io/yellowpaper/paper.pdf

[5] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling
byzantine agreements for cryptocurrencies,” in Proceedings of the 26th Symposium
on Operating Systems Principles, 2017, pp. 51–68.

[6] B. White, A. Mahanti, and K. Passi, “Characterizing the opensea nft marketplace,”
in Companion Proceedings of the Web Conference 2022, 2022, pp. 488–496.

[7] L. Gudgeon, S. Werner, D. Perez, and W. J. Knottenbelt, “Defi protocols for
loanable funds: Interest rates, liquidity and market efficiency,” in Proceedings of the
2nd ACM Conference on Advances in Financial Technologies, 2020, pp. 92–112.

[8] X.-J. Jiang and X. F. Liu, “Cryptokitties transaction network analysis: The rise and
fall of the first blockchain game mania,” Frontiers in Physics, vol. 9, p. 57, 2021.

[9] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al., “Hyperledger fabric: A
distributed operating system for permissioned blockchains,” in Proceedings of the
Thirteenth EuroSys Conference, 2018, pp. 1–15.

175

https://w3c.github.io/vc-data-model/
https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf


176 BIBLIOGRAPHY

[10] “Tradelens,” (Discontinued at the beginning of the year 2023) (Last accessed:
September 7, 2023). [Online]. Available: https://www.tradelens.com/

[11] F. Tian, “An agri-food supply chain traceability system for china based on rfid &
blockchain technology,” in Proceedings of the 13th International Conference on
Service Systems and Service Management, 2016, pp. 1–6.

[12] M. F. Munoz, K. Zhang, and F. Amara, “Zipzap: A blockchain solution for local
energy trading,” in Proceedings of the IEEE International Conference on Blockchain
and Cryptocurrency, 2022, pp. 1–5.

[13] S. Panda, A. Mukherjee, R. Halder, and S. Mondal, “Blockchain-enabled emergency
detection and response in mobile healthcare system,” in Proceedings of the IEEE
International Conference on Blockchain and Cryptocurrency, 2022, pp. 1–5.

[14] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “A cooperative
architecture of data offloading and sharing for smart healthcare with blockchain,” in
Proceedings of the IEEE International Conference on Blockchain and Cryptocur-
rency, 2021, pp. 1–8.

[15] E. Abebe, D. Behl, C. Govindarajan, Y. Hu, D. Karunamoorthy, P. Novotny,
V. Pandit, V. Ramakrishna, and C. Vecchiola, “Enabling enterprise blockchain
interoperability with trusted data transfer (industry track),” in Proceedings of the
International Middleware Conference Industrial Track, 2019, pp. 29–35.

[16] “What is a bill of lading?” (Last accessed: September 7, 2023). [Online]. Available:
https://www.tradefinanceglobal.com/freight-forwarding/bill-of-lading-bl-bol/

[17] A. Schiff, “Open and closed systems of two-sided networks,” Information
Economics and Policy, vol. 15, no. 4, pp. 425–442, 2003.

[18] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A survey on blockchain
interoperability: Past, present, and future trends,” ACM Computing Surveys, vol. 54,
no. 8, pp. 1–41, 2021.

[19] M. Herlihy, “Atomic cross-chain swaps,” in Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, 2018, pp. 245–254.

[20] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knottenbelt,
“Xclaim: Trustless, interoperable, cryptocurrency-backed assets,” in Proceedings of
the IEEE Symposium on Security and Privacy, 2019.

[21] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, and A. Juels, “Tesseract:
Real-time cryptocurrency exchange using trusted hardware,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, 2019,
pp. 1521–1538.

https://www.tradelens.com/
https://www.tradefinanceglobal.com/freight-forwarding/bill-of-lading-bl-bol/


BIBLIOGRAPHY 177

[22] M. Westerkamp and A. Küpper, “Smartsync: Cross-blockchain smart contract inter-
action and synchronization,” in Proceedings of the IEEE International Conference
on Blockchain and Cryptocurrency, 2022, pp. 1–9.

[23] T. Tran, H. Zheng, P. Alvaro, and O. Arden, “Payment channels under network
congestion,” in Proceedings of the IEEE International Conference on Blockchain
and Cryptocurrency, 2022, pp. 1–5.

[24] S. Chakraborty and S. Chakraborty, “Proof of federated training: Accountable cross-
network model training and inference,” in Proceedings of the IEEE International
Conference on Blockchain and Cryptocurrency, 2022, pp. 1–9.

[25] D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant, M. Sabadello, and J. Holt,
“Decentralized identifiers (dids) v1.0,” 2020, (Last accessed: September 7, 2023).
[Online]. Available: https://w3c.github.io/did-core/

[26] A. Dalskov, C. Orlandi, M. Keller, K. Shrishak, and H. Shulman, “Securing dnssec
keys via threshold ecdsa from generic mpc,” in Proceedings of the European
Symposium on Research in Computer Security. Springer, 2020, pp. 654–673.

[27] “IBM Food Trust,” (Last accessed: September 7, 2023). [Online]. Available:
https://www.ibm.com/in-en/blockchain/solutions/food-trust

[28] “Marco Polo - A Trade Finance Initiative,” 2020, (Last accessed: September 7,
2023). [Online]. Available: https://www.marcopolo.finance/

[29] M. Hearn, “Corda: A distributed ledger,” Corda Technical White Pa-
per, 2016, (Last accessed: September 7, 2023). [Online]. Available:
https://www.corda.net/content/corda-technical-whitepaper.pdf

[30] “Ca certificates in firefox,” (Last accessed: September 7, 2023). [Online]. Available:
https://ccadb-public.secure.force.com/mozilla/CACertificatesInFirefoxReport

[31] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly,
I. Khoffi, and B. Ford, “Keeping authorities “honest or bust” with decentralized
witness cosigning,” in Proceedings of the IEEE Symposium on Security and Privacy,
2016, pp. 526–545.

[32] “Hyperledger burrow,” 2022, (Last accessed: September 7, 2023). [Online].
Available: https://www.hyperledger.org/project/hyperledger-burrow

[33] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid prototyping
for software-defined networks,” in Proceedings of the ACM SIGCOMM Workshop
on Hot Topics in Networks, 2010, pp. 1–6.

[34] “Hyperledger indy,” (Last accessed: September 7, 2023). [Online]. Available:
https://www.hyperledger.org/use/hyperledger-indy

https://w3c.github.io/did-core/
https://www.ibm.com/in-en/blockchain/solutions/food-trust
https://www.marcopolo.finance/
https://www.corda.net/content/corda-technical-whitepaper.pdf
https://ccadb-public.secure.force.com/mozilla/CACertificatesInFirefoxReport
https://www.hyperledger.org/project/hyperledger-burrow
https://www.hyperledger.org/use/hyperledger-indy


178 BIBLIOGRAPHY

[35] “Hyperledger aries,” (Last accessed: September 7, 2023). [Online]. Available:
https://www.hyperledger.org/use/aries

[36] M. Keller, “MP-SPDZ: A versatile framework for multi-party computation,” in Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1575–1590.

[37] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computation from
somewhat homomorphic encryption,” in Proceedings of the Annual Cryptology
Conference. Springer, 2012, pp. 643–662.

[38] B. Bellaj, A. Ouaddah, E. Bertin, N. Crespi, and A. Mezrioui, “Sok: a compre-
hensive survey on distributed ledger technologies,” in Proceedings of the IEEE
International Conference on Blockchain and Cryptocurrency, 2022, pp. 1–16.

[39] M. Swan, Blockchain: Blueprint for a new economy. “ O’Reilly Media, Inc.”, 2015.

[40] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM
Trans. Program. Lang. Syst., vol. 4, no. 3, p. 382–401, 1982.

[41] F. B. Schneider, “Implementing fault-tolerant services using the state machine
approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4, pp. 299–319, 1990.

[42] A. Dorri and R. Jurdak, “Tree-chain: A lightweight consensus algorithm for
iot-based blockchains,” in Proceedings of the IEEE International Conference on
Blockchain and Cryptocurrency, 2021, pp. 1–9.

[43] E. J. Scheid, A. Knecht, T. Strasser, C. Killer, M. Franco, B. Rodrigues, and
B. Stiller, “Edge2BC: a practical approach for edge-to-blockchain iot transac-
tions,” in Proceedings of the IEEE International Conference on Blockchain and
Cryptocurrency, 2021, pp. 1–9.

[44] S. Huh, S. Cho, and S. Kim, “Managing IoT devices using blockchain platform,”
in Proceedings of the International conference on advanced communication
technology. IEEE, 2017, pp. 464–467.

[45] Y. Hu, S. Kumar, and R. A. Popa, “Ghostor: Toward a secure Data-Sharing system
from decentralized trust,” in Proceedings of the 17th USENIX Symposium on
Networked Systems Design and Implementation, 2020, pp. 851–877.

[46] R. D. Garcia, G. S. Ramachandran, R. Jurdak, and J. Ueyama, “A blockchain-based
data governance with privacy and provenance: a case study for e-prescription,” in
Proceedings of the IEEE International Conference on Blockchain and Cryptocur-
rency, 2022, pp. 1–5.

[47] A. Salau, R. Dantu, and K. Upadhyay, “Data cooperatives for neighborhood
watch,” in Proceedings of the IEEE International Conference on Blockchain and
Cryptocurrency, 2021, pp. 1–9.

https://www.hyperledger.org/use/aries


BIBLIOGRAPHY 179

[48] S. Chopra, B. Palanisamy, and S. Sural, “Credit-based peer-to-peer ride sharing
using smart contracts,” in Proceedings of the IEEE International Conference on
Blockchain and Cryptocurrency, 2022, pp. 1–3.

[49] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun,
“On the security and performance of proof of work blockchains,” in Proceedings of
the ACM SIGSAC conference on computer and communications security, 2016, pp.
3–16.

[50] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A provably
secure proof-of-stake blockchain protocol,” in Annual International Cryptology
Conference. Springer, 2017, pp. 357–388.

[51] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse, “Bitcoin-NG: A scalable
blockchain protocol,” in Proceedings of the 13th USENIX Symposium on Networked
Systems Design and Implementation, 2016, pp. 45–59.

[52] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford, “Enhancing
bitcoin security and performance with strong consistency via collective signing,” in
Proceedings of the 25th USENIX Security Symposium, 2016, pp. 279–296.

[53] K. Wüst and A. Gervais, “Do you need a blockchain?” in Proceedings of the Crypto
Valley Conference on Blockchain Technology. IEEE, 2018, pp. 45–54.

[54] J. R. Douceur, “The sybil attack,” in Proceedings of the International workshop on
peer-to-peer systems. Springer, 2002, pp. 251–260.

[55] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnerable,” in
International conference on financial cryptography and data security. Springer,
2014, pp. 436–454.

[56] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on bitcoin’s
peer-to-peer network,” in Proceedings of the 24th USENIX Security Symposium,
2015, pp. 129–144.

[57] S. Kasahara and J. Kawahara, “Effect of bitcoin fee on transaction-confirmation
process,” arXiv preprint arXiv:1604.00103, 2016.

[58] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in Proceedings
of the 3rd Symposium on Operating Systems Design and Implementation, 1999, pp.
173–186.

[59] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. Van Renesse, “{REM}: Resource-
efficient mining for blockchains,” in Proceedings of the 26th USENIX Security
Symposium, 2017, pp. 1427–1444.



180 BIBLIOGRAPHY

[60] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, “On security analysis of proof-
of-elapsed-time (poet),” in Proceedings of the International Symposium on Stabi-
lization, Safety, and Security of Distributed Systems. Springer, 2017, pp. 282–297.

[61] H. Sukhwani, J. M. Martı́nez, X. Chang, K. S. Trivedi, and A. Rindos, “Performance
modeling of pbft consensus process for permissioned blockchain network (hyper-
ledger fabric),” in Proceedings of the IEEE Symposium on Reliable Distributed
Systems, 2017, pp. 253–255.

[62] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication for the masses
with bft-smart,” in Proceedings of the IEEE/IFIP International Conference on
Dependable Systems and Networks, 2014, pp. 355–362.

[63] J. Sousa, A. Bessani, and M. Vukolic, “A byzantine fault-tolerant ordering service
for the hyperledger fabric blockchain platform,” in Proceedings of the IEEE/IFIP
international conference on dependable systems and networks, 2018, pp. 51–58.

[64] J. Kwon, “Tendermint: Consensus without mining,” Draft v. 0.6, fall, vol. 1,
no. 11, 2014, (Last accessed: September 7, 2023). [Online]. Available:
https://tendermint.com/static/docs/tendermint.pdf

[65] F. Muratov, A. Lebedev, N. Iushkevich, B. Nasrulin, and M. Takemiya, “Yac: Bft
consensus algorithm for blockchain,” arXiv preprint arXiv:1809.00554, 2018.

[66] P.-L. Aublin, S. B. Mokhtar, and V. Quéma, “RBFT: Redundant byzantine fault tol-
erance,” in Proceedings of the 33rd IEEE International Conference on Distributed
Computing Systems, 2013, pp. 297–306.

[67] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of bft
protocols,” in Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 31–42.

[68] S. Duan, M. K. Reiter, and H. Zhang, “Beat: Asynchronous bft made practi-
cal,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 2028–2041.

[69] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hotstuff: Bft
consensus with linearity and responsiveness,” in Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, 2019, p. 347–356.

[70] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed consensus pro-
tocols for blockchain networks,” IEEE Communications Surveys & Tutorials, 2020.

[71] N. Szabo, “Formalizing and securing relationships on public networks,” First
Monday, vol. 2, no. 9, 1997.

https://tendermint.com/static/docs/tendermint.pdf


BIBLIOGRAPHY 181

[72] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels, A. Miller,
and D. Song, “Ekiden: A platform for confidentiality-preserving, trustworthy, and
performant smart contracts,” in Proceedings of the IEEE European Symposium on
Security and Privacy, 2019, pp. 185–200.

[73] P. A. Bernstein and N. Goodman, “Multiversion concurrency control—theory and
algorithms,” ACM Transactions on Database Systems, vol. 8, no. 4, pp. 465–483,
1983.

[74] N. Leavitt, “Internet security under attack: The undermining of digital certificates,”
Computer, vol. 44, no. 12, pp. 17–20, 2011.

[75] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley, A. Flores-López, J. A.
Halderman, J. Hoffman-Andrews, J. Kasten, E. Rescorla et al., “Let’s encrypt: an
automated certificate authority to encrypt the entire web,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, 2019,
pp. 2473–2487.

[76] C. Allen, “The path to self-sovereign identity,” (Last accessed: 28 July, 2022).
[Online]. Available: http://www.lifewithalacrity.com/2016/04/the-path-to-self-
soverereign-identity.html

[77] N. Vallina-Rodriguez, J. Amann, C. Kreibich, N. Weaver, and V. Paxson, “A tangled
mass: The android root certificate stores,” in Proceedings of the 10th ACM Inter-
national on Conference on emerging Networking Experiments and Technologies,
2014, pp. 141–148.

[78] O. Avellaneda, A. Bachmann, A. Barbir, J. Brenan, P. Dingle, K. H. Duffy, E. Maler,
D. Reed, and M. Sporny, “Decentralized identity: Where did it come from and
where is it going?” IEEE Communications Standards Magazine, vol. 3, no. 4, pp.
10–13, 2019.

[79] A. Tobin and D. Reed, “The inevitable rise of self-sovereign identity,” The Sovrin
Foundation, vol. 29, no. 2016, 2016, (Last accessed: September 7, 2023). [Online].
Available: https://sovrin.org/library/inevitable-rise-of-self-sovereign-identity/

[80] C. Li, P. Li, D. Zhou, Z. Yang, M. Wu, G. Yang, W. Xu, F. Long, and A. C.-C.
Yao, “A decentralized blockchain with high throughput and fast confirmation,” in
Proceedings of the USENIX Annual Technical Conference, 2020, pp. 515–528.

[81] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-Sanchez,
A. Kiayias, and W. J. Knottenbelt, “Sok: Communication across distributed
ledgers,” Cryptology ePrint Archive, 2019, https://eprint.iacr.org/2019/1128.

[82] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and M. Maffei,
“Anonymous multi-hop locks for blockchain scalability and interoperability.” in
Proceedings of the Network and Distributed Systems Security Symposium, 2019.

http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://sovrin.org/library/inevitable-rise-of-self-sovereign-identity/
https://eprint.iacr.org/2019/1128


182 BIBLIOGRAPHY

[83] “Hashed time-locked contract transactions.” Bitcoin Wik, 2020,
(Last accessed: September 7, 2023). [Online]. Available:
https://en.bitcoin.it/wiki/Hash Time Locked Contracts

[84] J. Xu, D. Ackerer, and A. Dubovitskaya, “A game-theoretic analysis of cross-chain
atomic swaps with htlcs,” in Proceedings of the 41st IEEE International Conference
on Distributed Computing Systems. IEEE, 2021, pp. 584–594.

[85] R. Pass, E. Shi, and F. Tramer, “Formal abstractions for attested execution secure
processors,” in Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2017, pp. 260–289.

[86] S. A. Thyagarajan, G. Malavolta, and P. Moreno-Sanchez, “Universal atomic swaps:
Secure exchange of coins across all blockchains,” in Proceedings of the IEEE
Symposium on Security and Privacy. IEEE, 2022, pp. 1299–1316.

[87] S. A. K. Thyagarajan, A. Bhat, G. Malavolta, N. Döttling, A. Kate, and D. Schröder,
“Verifiable timed signatures made practical,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020, pp.
1733–1750.

[88] V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang, R. Mittal, G. Fanti,
and M. Alizadeh, “High throughput cryptocurrency routing in payment channel
networks,” in Proceedings of the 17th USENIX Symposium on Networked Systems
Design and Implementation, 2020, pp. 777–796.

[89] P. Gaži, A. Kiayias, and D. Zindros, “Proof-of-stake sidechains,” in Proceedings of
the IEEE Symposium on Security and Privacy. IEEE, 2019, pp. 139–156.

[90] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford, “Om-
niledger: A secure, scale-out, decentralized ledger via sharding,” in Proceedings of
the IEEE Symposium on Security and Privacy, 2018.

[91] R. Belchior, A. Vasconcelos, M. Correia, and T. Hardjono, “Hermes: Fault-tolerant
middleware for blockchain interoperability,” Future Generation Computer Systems,
vol. 129, pp. 236–251, 2022.

[92] E. Abebe, Y. Hu, A. Irvin, D. Karunamoorthy, V. Pandit, V. Ramakrishna, and
J. Yu, “Verifiable observation of permissioned ledgers,” in Proceedings of the IEEE
International Conference on Blockchain and Cryptocurrency, 2021.

[93] D. Behl, P. Kodeswaran, V. Ramakrishna, S. Sen, and D. Vinayagamurthy,
“Trusted data notifications from private blockchains,” in Proceedings of the IEEE
International Conference on Blockchain. IEEE, 2020, pp. 53–61.

https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts


BIBLIOGRAPHY 183

[94] M. Westerkamp and M. Diez, “Verilay: A verifiable proof of stake chain re-
lay,” in Proceedings of the IEEE International Conference on Blockchain and
Cryptocurrency, 2022, pp. 1–9.

[95] “Ens - ethereum name service,” 2020, (Last accessed: September 7, 2023).
[Online]. Available: https://ens.domains/

[96] “Identity - polkadot wiki,” 2020, (Last accessed: September 7, 2023). [Online].
Available: https://wiki.polkadot.network/docs/en/learn-identity/

[97] “uport - tools for decentralized identity and trusted data,” 2020. [Online]. Available:
https://www.uport.me/

[98] “Ontology - a blockchain for self-soverign id and data,” 2020, (Last accessed:
September 7, 2023). [Online]. Available: https://ont.io/

[99] “Corda network,” 2020, (Last accessed: September 7, 2023). [Online]. Available:
https://corda.network/

[100] Hyperledger, “Hyperledger besu,” 2020. [Online]. Available:
https://besu.hyperledger.org/

[101] H. Montgomery, H. Borne-Pons, J. Hamilton, M. Bowman, P. Somogyvari, S. Fu-
jimoto, T. Takeuchi, T. Kuhrt, and R. Belchior, “Hyperledger cactus whitepaper:
Version 0.1 (early draft),” (Last accessed: September 7, 2023). [Online]. Available:
https://github.com/hyperledger/cactus/blob/master/whitepaper/whitepaper.md

[102] M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R. Jarvis, B. Smith, and
L. Yu, “Negotiating trust in the web,” IEEE Internet Computing, vol. 6, no. 6, pp.
30–37, 2002.

[103] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection based on
{OT} extension,” in Proceedings of the 23rd USENIX Security Symposium, 2014,
pp. 797–812.

[104] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled circuits
better than custom protocols?” in Proceedings of the Network and Distributed
Systems Security Symposium, 2012.

[105] H. Chen, K. Laine, and P. Rindal, “Fast private set intersection from homomorphic
encryption,” in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1243–1255.

[106] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: Private set intersection
using permutation-based hashing,” in {USENIX} Security, 2015, pp. 515–530.

https://ens.domains/
https://wiki.polkadot.network/docs/en/learn-identity/
https://www.uport.me/
https://ont.io/
https://corda.network/
https://besu.hyperledger.org/
https://github.com/hyperledger/cactus/blob/master/whitepaper/whitepaper.md


184 BIBLIOGRAPHY

[107] P. Rindal and M. Rosulek, “Malicious-secure private set intersection via dual
execution,” in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1229–1242.

[108] L. Kissner and D. Song, “Privacy-preserving set operations,” in Annual International
Cryptology Conference. Springer, 2005, pp. 241–257.

[109] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching and set
intersection,” in Proceedings of the International conference on the theory and
applications of cryptographic techniques. Springer, 2004, pp. 1–19.

[110] D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung, “Efficient robust
private set intersection,” in Proceedings of the International Conference on Applied
Cryptography and Network Security. Springer, 2009, pp. 125–142.

[111] E. D. Cristofaro and G. Tsudik, “Practical private set intersection protocols with
linear complexity,” in Proceedings of the Financial Cryptography and Data
Security, 14th International Conference, FC 2010. Springer, 2010.

[112] M. Chase and P. Miao, “Private set intersection in the internet setting from
lightweight oblivious PRF,” in Advances in Cryptology - CRYPTO 2020 - 40th
Annual International Cryptology Conference. Springer, 2020.

[113] J. Camenisch and G. M. Zaverucha, “Private intersection of certified sets,” in
Proceedings of the International Conference on Financial Cryptography and Data
Security. Springer, 2009, pp. 108–127.

[114] D. Bosk, D. Frey, M. Gestin, and G. Piolle, “Hidden issuer anonymous credential,”
Proceedings on Privacy Enhancing Technologies, vol. 4, pp. 571–607, 2022.

[115] J. Bobolz, F. Eidens, S. Krenn, S. Ramacher, and K. Samelin, “Issuer-hiding
attribute-based credentials,” in Proceedings of the International Conference on
Cryptology and Network Security. Springer, 2021, pp. 158–178.

[116] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H.-C. Wong,
“Secret handshakes from pairing-based key agreements,” in Proceedings of the
IEEE Symposium on Security and Privacy. IEEE, 2003, pp. 180–196.

[117] G. Ateniese, J. Kirsch, and M. Blanton, “Secret handshakes with dynamic and
fuzzy matching.” in Proceedings of the Network and Distributed Systems Security
Symposium, vol. 7, no. 24, 2007, pp. 43–54.

[118] J. Haucap and U. Heimeshoff, “Google, Facebook, Amazon, eBay: Is the Internet
driving competition or market monopolization?” International Economics and
Economic Policy, vol. 11, 2014.



BIBLIOGRAPHY 185

[119] M. Hindman, The Internet trap: How the digital economy builds monopolies and
undermines democracy. Princeton University Press, 2018.

[120] H. Subramanian, “Decentralized blockchain-based electronic marketplaces,”
Communications of the ACM, vol. 61, no. 1, pp. 78–84, 2017.

[121] N. Hynes, D. Dao, D. Yan, R. Cheng, and D. Song, “A demonstration of sterling:
a privacy-preserving data marketplace,” Proceedings of the VLDB Endowment,
vol. 11, no. 12, pp. 2086–2089, 2018.

[122] P. Pal and S. Ruj, “BlockV: A blockchain enabled peer-peer ride sharing service,”
in Proceedings of the IEEE International Conference on Blockchain, 2019.

[123] Z. Wang, L. Yang, Q. Wang, D. Liu, Z. Xu, and S. Liu, “ArtChain: Blockchain-
enabled platform for art marketplace,” in Proceedings of the IEEE International
Conference on Blockchain, 2019.

[124] Y.-W. Chang, K.-P. Lin, and C.-Y. Shen, “Blockchain technology for e-marketplace,”
in IEEE PerCom Workshops, 2019.

[125] S. Narang, M. Byali, P. Dayama, V. Pandit, and Y. Narahari, “Design of trusted B2B
market platforms using permissioned blockchains and game theory,” in Proceedings
of the IEEE International Conference on Blockchain and Cryptocurrency, 2019.

[126] “Onapp-Federation,” (Last accessed: 5 Jan, 2021). [Online]. Available:
https://onapp.com/onapp-federation/

[127] S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolić, “XFT: Practical fault
tolerance beyond crashes,” in Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, 2016, pp. 485–500.

[128] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial
synchrony,” Journal of the ACM, vol. 35, no. 2, pp. 288–323, 1988.

[129] U. Pavloff, Y. Amoussou-Guenou, and S. Tucci-Piergiovanni, “Ethereum proof-
of-stake under scrutiny,” in Proceedings of the 38th ACM/SIGAPP Symposium on
Applied Computing, 2023, pp. 212–221.

[130] Y. Shahsavari, K. Zhang, and C. Talhi, “A theoretical model for fork analysis in
the bitcoin network,” in Proceedings of the IEEE International Conference on
Blockchain. IEEE, 2019.

[131] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil pairing,” in
Advances in Cryptology — ASIACRYPT 2001, C. Boyd, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 514–532.

https://onapp.com/onapp-federation/


186 BIBLIOGRAPHY

[132] J. Mei, K. Li, Z. Tong, Q. Li, and K. Li, “Profit maximization for cloud brokers in
cloud computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 30,
no. 1, pp. 190–203, 2018.

[133] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing
algorithm,” in Symposium Proceedings on Communications Architectures &
Protocols, ser. SIGCOMM ’89. ACM, 1989.

[134] S. De Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and V. Sassone,
“Pbft vs proof-of-authority: Applying the cap theorem to permissioned blockchain,”
in Proceedings of the Italian Conference on Cyber Security, 2018.

[135] “we.trade,” (Last accessed: September 7, 2023). [Online]. Available:
https://www.ibm.com/case-studies/wetrade-blockchain-fintech-trade-finance/

[136] M. Curry, “Blockchain for kyc: Game-changing regtech innovation,” 2018, (Last
accessed: September 7, 2023). [Online]. Available: https://www.ibm.com/blogs/
insights-on-business/banking/blockchain-kyc-game-changing-regtech-innovation/

[137] A. Kiayias, N. Lamprou, and A.-P. Stouka, “Proofs of proofs of work with sub-
linear complexity,” in Proceedings of the International Conference on Financial
Cryptography and Data Security. Springer, 2016, pp. 61–78.

[138] A. Kiayias and D. Zindros, “Proof-of-work sidechains,” in Proceedings of the
International Conference on Financial Cryptography and Data Security. Springer,
2019, pp. 21–34.

[139] “Cosmos network - internet of blockchains,” 2020, (Last accessed: September 7,
2023). [Online]. Available: https://cosmos.network/

[140] “Polkadot: Decentralized web 3.0 blockchain interoperability platform,” 2020.
[Online]. Available: https://polkadot.network/

[141] “Membership service provider (msp),” 2020, (Last accessed:
September 7, 2023). [Online]. Available: https://hyperledger-
fabric.readthedocs.io/en/latest/membership/membership.html

[142] “Did specification registries,” 2020, (Last accessed: September 7, 2023). [Online].
Available: https://www.w3.org/TR/did-spec-registries

[143] “Sidetree protocol,” (Last accessed: September 7, 2023). [Online]. Available:
https://identity.foundation/sidetree/spec/

[144] K. Hamilton-Duffy, R. Grant, and A. Gropper, “Use cases and requirements for
decentralized identifiers,” 2020, (Last accessed: September 7, 2023). [Online].
Available: https://www.w3.org/TR/did-use-cases/

https://www.ibm.com/case-studies/wetrade-blockchain-fintech-trade-finance/
https://www.ibm.com/blogs/insights-on-business/banking/blockchain-kyc-game-changing-regtech-innovation/
https://www.ibm.com/blogs/insights-on-business/banking/blockchain-kyc-game-changing-regtech-innovation/
https://cosmos.network/
https://polkadot.network/
https://hyperledger-fabric.readthedocs.io/en/latest/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/latest/membership/membership.html
https://www.w3.org/TR/did-spec-registries
https://identity.foundation/sidetree/spec/
https://www.w3.org/TR/did-use-cases/


BIBLIOGRAPHY 187

[145] J. Benaloh and M. De Mare, “One-way accumulators: A decentralized alternative to
digital signatures,” in Workshop on the Theory and Application of of Cryptographic
Techniques. Springer, 1993, pp. 274–285.

[146] “Letters of credit,” (Last accessed: September 7, 2023). [Online]. Available:
http://tfig.unece.org/contents/letters-of-credit.htm

[147] “Sovrin,” (Last accessed: September 7, 2023). [Online]. Available:
https://sovrin.org/

[148] “Hyperledger fabric ca (certificate authority),” 2020, (Last accessed: September 7,
2023). [Online]. Available: https://hyperledger-fabric-ca.readthedocs.io/en/release-
1.4/

[149] “Indy sdk,” 2020, (Last accessed: September 7, 2023). [Online]. Available:
https://github.com/hyperledger/indy-sdk

[150] “Hyperledger aries cloud agent - python,” 2020, (Last accessed: September 7,
2023). [Online]. Available: https://github.com/hyperledger/aries-cloudagent-python

[151] “Hyperledger fabric sdks,” 2020, (Last accessed: September 7, 2023). [Online].
Available: https://hyperledger-fabric.readthedocs.io/en/latest/fabric-sdks.html

[152] M. E. Whitman and H. J. Mattord, Principles of Information Security, 4th ed.
Boston, MA, United States: Course Technology Press, 2011.

[153] “Cordapp,” (Last accessed: September 7, 2023). [Online]. Available:
https://docs.corda.net/docs/corda-os/4.6/cordapp-overview.html

[154] “Dapp,” (Last accessed: September 7, 2023). [Online]. Available:
https://ethereum.org/en/developers/docs/dapps/

[155] “Simplified payment verification,” (Last accessed: Dec 20, 2021). [Online].
Available: https://wiki.bitcoinsv.io/index.php/Simplified Payment Verification

[156] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. K. Miller,
A. Poelstra, J. Timón, and P. Wuille, “Enabling blockchain innovations with
pegged sidechains,” 2014, Accessed on September 7, 2023. [Online]. Available:
https://bitcoin.fr/public/divers/docs/sidechains.pdf

[157] Z. Liu, Y. Xiang, J. Shi, P. Gao, H. Wang, X. Xiao, B. Wen, and Y.-C. Hu, “Hyper-
service: Interoperability and programmability across heterogeneous blockchains,”
in Proceedings of the ACM SIGSAC conference on computer and communications
security, 2019, pp. 549–566.

[158] M. Westerkamp, “Verifiable smart contract portability,” in Proceedings of the IEEE
International Conference on Blockchain and Cryptocurrency, 2019.

http://tfig.unece.org/contents/letters-of-credit.htm
https://sovrin.org/
https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/
https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/
https://github.com/hyperledger/indy-sdk
https://github.com/hyperledger/aries-cloudagent-python
https://hyperledger-fabric.readthedocs.io/en/latest/fabric-sdks.html
https://docs.corda.net/docs/corda-os/4.6/cordapp-overview.html
https://ethereum.org/en/developers/docs/dapps/
https://wiki.bitcoinsv.io/index.php/Simplified_Payment_Verification
https://bitcoin.fr/public/divers/docs/sidechains.pdf


188 BIBLIOGRAPHY

[159] Z. Jaroucheh and I. A. Álvarez, “Secretation: Toward a decentralised identity
and verifiable credentials based scalable and decentralised secret management
solution,” in Proceedings of the IEEE International Conference on Blockchain and
Cryptocurrency, 2021, pp. 1–9.

[160] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke, “Snap: A protocol
for negotiating service level agreements and coordinating resource management in
distributed systems,” in Proceedings of the Workshop on Job Scheduling Strategies
for Parallel Processing. Springer, 2002, pp. 153–183.

[161] A. Group, “Decentralized identity: Passport to web3,” Nov 2021, (Last
accessed: Dec 20, 2021). [Online]. Available: https://medium.com/amber-
group/decentralized-identity-passport-to-web3-d3373479268a

[162] A. C. Yao, “Protocols for secure computations,” in Proceedings of the 23rd annual
symposium on foundations of computer science (sfcs 1982). IEEE, 1982, pp.
160–164.

[163] “PCI protocol - source code.” [Online]. Available: https:
//github.com/ghoshbishakh/private certifier intersection

[164] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE transactions on information theory, vol. 31, no. 4, pp. 469–472,
1985.

[165] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual Symposium
on Foundations of Computer Science. IEEE, 1986, pp. 162–167.

[166] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game or A
completeness theorem for protocols with honest majority,” in Proceedings of the
19th ACM Symposium on Theory of Computing (STOC), 1987, pp. 218–229.

[167] M. Keller, E. Orsini, and P. Scholl, “Mascot: faster malicious arithmetic secure
computation with oblivious transfer,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 830–842.

[168] X. ANSI, “62: public key cryptography for the financial services industry: the
elliptic curve digital signature algorithm (ecdsa),” Am. Nat’l Standards Inst, 1999.

[169] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital signature
algorithm (ecdsa),” International journal of information security, vol. 1, no. 1, pp.
36–63, 2001.

[170] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures for smaller
blockchains,” in Proceedings of the International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2018, pp. 435–464.

https://medium.com/amber-group/decentralized-identity-passport-to-web3-d3373479268a
https://medium.com/amber-group/decentralized-identity-passport-to-web3-d3373479268a
https://github.com/ghoshbishakh/private_certifier_intersection
https://github.com/ghoshbishakh/private_certifier_intersection


BIBLIOGRAPHY 189

[171] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and verifiably en-
crypted signatures from bilinear maps,” in International conference on the theory
and applications of cryptographic techniques. Springer, 2003, pp. 416–432.

[172] R. Canetti, A. Cohen, and Y. Lindell, “A simpler variant of universally composable
security for standard multiparty computation,” in Annual Cryptology Conference.
Springer, 2015, pp. 3–22.

[173] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart, “Practical
covertly secure mpc for dishonest majority–or: breaking the spdz limits,” in Pro-
ceedings of the European Symposium on Research in Computer Security. Springer,
2013, pp. 1–18.

[174] “OpenSSL,” (Last accessed: September 7, 2023). [Online]. Available:
https://www.openssl.org/

[175] B. Lynn, “Pbc library-pairing-based cryptography,” http://crypto.stanford.edu/pbc/,
(Last accessed: September 7, 2023).

[176] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao, “RELIC is
an Efficient LIbrary for Cryptography,” https://github.com/relic-toolkit/relic, (Last
accessed: September 7, 2023).

[177] B. Moeller, N. Bolyard, V. Gupta, S. Blake-Wilson, and C. Hawk, “Elliptic
Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS),”
RFC 4492, May 2006, (Last accessed: September 7, 2023). [Online]. Available:
https://www.rfc-editor.org/info/rfc4492

[178] P. E. Hoffman and W. Wijngaards, “Elliptic Curve Digital Signature Algorithm
(DSA) for DNSSEC,” RFC 6605, Apr. 2012, (Last accessed: September 7, 2023).
[Online]. Available: https://www.rfc-editor.org/info/rfc6605

[179] D. Boneh, S. Gorbunov, R. S. Wahby, H. Wee, and Z. Zhang, “BLS
Signatures,” Internet Engineering Task Force, Internet-Draft draft-irtf-
cfrg-bls-signature-04, Sep. 2020, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04

[180] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing, “Spd Z2k : efficient
mpc mod 2k for dishonest majority,” in Proceedings of the Annual International
Cryptology Conference. Springer, 2018, pp. 769–798.

[181] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: making spdz great again,” in
Proceedings of the Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 2018, pp. 158–189.

https://www.openssl.org/
https://github.com/relic-toolkit/relic
https://www.rfc-editor.org/info/rfc4492
https://www.rfc-editor.org/info/rfc6605
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04


190 BIBLIOGRAPHY

[182] A. Aly, K. Cong, D. Cozzo, M. Keller, E. Orsini, D. Rotaru, O. Scherer, P. Scholl,
N. Smart, T. Tanguy et al., “Scale–mamba,” https://github.com/KULeuven-
COSIC/SCALE-MAMBA, (Last accessed: September 7, 2023).

[183] N. P. Smart and Y. Talibi Alaoui, “Distributing any elliptic curve based protocol,”
in Proceedings of the IMA International Conference on Cryptography and Coding.
Springer, 2019, pp. 342–366.

[184] L. Grassi, C. Rechberger, D. Rotaru, P. Scholl, and N. P. Smart, “Mpc-friendly
symmetric key primitives,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 430–443.

[185] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed
high-security signatures,” Journal of cryptographic engineering, vol. 2, no. 2, pp.
77–89, 2012.

[186] “Sec 2: Recommended elliptic curve domain parameters,” (Last accessed:
September 7, 2023). [Online]. Available: https://www.secg.org/sec2-v2.pdf

[187] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver,
D. Adrian, V. Paxson, M. Bailey et al., “The matter of heartbleed,” in Proceedings
of the 2014 conference on internet measurement conference, 2014, pp. 475–488.

[188] M. Nemec, D. Klinec, P. Svenda, P. Sekan, and V. Matyas, “Measuring popularity of
cryptographic libraries in internet-wide scans,” in Proceedings of the 33rd Annual
Computer Security Applications Conference, 2017, pp. 162–175.

[189] P. S. Barreto, B. Lynn, and M. Scott, “Constructing elliptic curves with prescribed
embedding degrees,” in Proceedings of the International conference on security in
communication networks. Springer, 2002, pp. 257–267.

[190] R. S. Wahby and D. Boneh, “Fast and simple constant-time hashing to the
BLS12-381 elliptic curve,” Cryptology ePrint Archive, 2019.

[191] S. Yonezawa, T. Kobayashi, and T. Saito, “Pairing-friendly curves,” Network
Working Group. Internet-Draft. January, 2019.

[192] P. S. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of prime order,”
in Proceedings of the International workshop on selected areas in cryptography.
Springer, 2005, pp. 319–331.

[193] A. de la Piedra, M. Venema, and G. Alpár, “ABE Squared: Accurately benchmark-
ing efficiency of attribute-based encryption,” Cryptology ePrint Archive, 2022.

[194] “tc - show / manipulate traffic control settings,” (Last accessed: September 7,
2023). [Online]. Available: https://man7.org/linux/man-pages/man8/tc.8.html

https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://www.secg.org/sec2-v2.pdf
https://man7.org/linux/man-pages/man8/tc.8.html


BIBLIOGRAPHY 191

[195] “Amazon ec2 c6i instances,” (Last accessed: September 7, 2023). [Online].
Available: https://aws.amazon.com/ec2/instance-types/c6i/

https://aws.amazon.com/ec2/instance-types/c6i/




Appendix A

Multi-Party PCI Definition

In this section, we extend the definition of two-party PCI in Chapter 6.2 to the more gen-

eral setting of multi-party PCI involving n parties P1, . . . , Pn. Similar to a two-party PCI

protocol, in a multi-party PCI protocol, each party Pi for i ∈ [1, n] inputs a tuple of the

form inpi =
(
inpi,1, inpi,2

)
. We consider the following analogous variations of multi-party

PCI protocols:

• Validate-Any: Each party Pi for i ∈ [1, n] receives as output the set

outPCI-Any(inp1, . . . , inpn) =
{
id ∈

⋂
i∈[1,n]

id(inpi,1) :

∀i ∈ [1, n] RPCI-Any,inpi(id) = 1
}

where RPCI-Any,inpi(·) for each i ∈ [1, n] is as defined in the two-party case.

• Leaky Validate-Any: Each party Pi for i ∈ [1, n] receives as output the set

outPCI-Any-DC(inp1, . . . , inpn) =
{(

id, {minpi(id)}i∈[1,n]
)
:

id ∈ outPCI-Any(inp1, . . . , inpn)
}

where minpi(·) for each i ∈ [1, n] is again as defined in the two-party case.

193



194 Chapter A Multi-Party PCI Definition

• Validate-All: Each party Pi for i ∈ [1, n] receives as output the set

outPCI-All(inp1, . . . , inpn) =
{
id ∈

⋂
i∈[1,n]

id(inpi,1) :

∀i ∈ [1, n] RPCI-All,inpi(id) = 1
}

where RPCI-All,inpi(·) for each i ∈ [1, n] is again as defined in the two-party case.

Security of Multi-Party PCI. We now define the security guarantees expected of a multi-

party PCI protocol. Similar to the two-party setting, informally, we require that in any

multi-party PCI protocol Π, each party Pi learns nothing about the inputs of the other par-

ties Pj for j ̸= i except what is revealed by the output out of the protocol Π, and the size

Nj of the input set of party Pj . We again formalize this security guarantee using the sim-

plified universal composability (SUC) framework due to Canetti, Cohen, and Lindell [172]

in the real/ideal world paradigm. Our definition is a natural generalization of the security

definition of two-party PCI in Section 6.2 to the multi-party setting. We again consider a

dishonest majority in our definitions, wherein the adversary can corrupt upto (n−1) parties

in an n-party PCI protocol.

Ideal Functionality for Multi-Party PCI. We begin by formally defining the ideal func-

tionality F (n)
PCI for n-party PCI, as described in Figure A.1. This ideal functionality is basi-

cally a generalization of the ideal functionality FPCI for two-party PCI (defined earlier in

Figure 6.3) to the n-party setting.

The Real World. In the real world, the following participants engage in the protocol Π:

• A set H ⊆ [1, n] of honest parties, where for each i ∈ H , the honest party Pi receives

its input from the environment Z and honestly follows the specified protocol Π.

• A real-world adversaryA controlling a set C ⊆ [1, n] of corrupt parties, that interacts

with the set H of honest parties and the environment Z .

• The environment Z that provides each honest party {Pi}i∈H with its input, and inter-

acts with the real-world adversary A. The environment Z also receives the outputs

of the honest parties, and eventually outputs a bit b ∈ {0, 1}.



195

F (n)
PCI(mode ∈ {Any,Any-DC,All})

• Let H ⊆ [1, n] be the set of honest parties, and let C ⊆ [1, n] be the set of corrupt parties.

• For each i ∈ [1, n], let the input of party Pi be inpi = (inpi,1, inpi,2), where

inpi,1 = {(idi,j , σi,j ,mi,j) ∈ ID × C ×M}j∈[1,Ni]

inpi,2 = {m̂i,j ∈M}j∈[1,N ′
i ]

For each i ∈ H , the input of an honest party Pi is provided directly to F (n)
PCI by Pi, while for each

i ∈ C, the input of a corrupt party Pi is provided to F (n)
PCI by the simulator S.

• F (n)
PCI computes outPCI-mode, where for mode ∈ {Any,Any-DC,All}, we have

outPCI-Any(inp1, . . . , inpn) =
{
id ∈

⋂
i∈[1,n]

id(inpi,1) :

∀i ∈ [1, n] RPCI-Any,inpi(id) = 1
}

outPCI-Any-DC(inp1, . . . , inpn) =
{(

id, {minpi(id)}i∈[1,n]

)
:

id ∈ outPCI-Any(inp1, . . . , inpn)
}

outPCI-All(inp1, . . . , inpn) =
{
id ∈

⋂
i∈[1,n]

id(inpi,1) :

∀i ∈ [1, n] RPCI-All,inpi(id) = 1
}

• F (n)
PCI sends

(
outPCI-mode, {Ni, inpi,2}i∈H

)
to the simulator S.

• If S responds with an abort, F (n)
PCI aborts.

• Otherwise, F (n)
PCI sends

(
outPCI-mode, {Ni, inpi,2}i∈[1,n]

)
to all the parties.

Figure A.1 Ideal functionality F (n)
PCI for multi-party PCI

The Ideal World. In the ideal world, the following participants interact with the ideal

functionality F (n)
PCI described in Figure 6.3.

• A set H ⊆ [1, n] of honest parties, where for each i ∈ H , the honest party Pi receives

its input from the environment Z and directly forwards this input to F (n)
PCI.

• An ideal-world simulator S that sends inputs to F (n)
PCI on behalf of a set C ⊆ [1, n]

of corrupt parties, and receives back the corresponding output from F (n)
PCI. S also



196 Chapter A Multi-Party PCI Definition

interacts with the environment Z , with the aim of making this interaction indistin-

guishable from the interaction between the real world A and the environment Z .

• The environment Z that provides each honest party {Pi}i∈H with its input, and in-

teracts with the simulator S. As in the real world, Z also receives the outputs of the

honest parties, and eventually outputs a bit b ∈ {0, 1}.

For any multi-party PCI protocol Π, any adversary A, any simulator S, and any environ-

ment Z , define the following random variables:

• realΠ,A,Z : a random variable that denotes the output of the environment Z after in-

teracting with the adversary A during an execution of the real-world protocol Π.

• idealF(n)
PCI ,S,Z

: a random variable that denotes the output of the environment Z after

interacting with the simulator S in the ideal world.

Definition 6 (Secure Multi-Party PCI). A multi-party PCI protocol Π securely emulates the

ideal functionality F (n)
PCI described in Figure A.1 if for any security parameter λ ∈ N and

any probabilistic polynomial time (PPT) adversary A, there exists a PPT simulator S such

that, for any PPT environment Z , we have∣∣∣Pr [realΠ,A,Z = 1]− Pr
[
idealF(n)

PCI ,S,Z
= 1

]∣∣∣ ≤ negl(λ)



Appendix B

Formal Proofs of Security of PCI

In this section we provide a formal proof of both ECDSA-based PCI-Any-DC and BLS-

based PCI-All. For an informal overview of the proof of ECDSA PCI-Any-DC see Chapter

6.4.

B.1 Proof of Security of ECDSA-based PCI-Any-DC

In this section, we prove the SUC security of our PCI-Any-DC protocol based on ECDSA.

More formally, we prove Theorem 4 by constructing a PPT simulator S such that no PPT

environment Z , who corrupts one of the parties (say P1 without loss of generality) and

chooses the input for P1, can distinguish with significant probability, a view obtained by

running our proposed PCI-Any-DC protocol for ECDSA signatures in Algorithm 6 between

a PPT adversary A and honest party (say P2 without loss of generality), and a simulated

execution of the protocol between S and FPCI(PCI-Any-DC) (for the two-party setting).

The environment Z’s view consists of the intermediate messages sent and received by the

adversary A, the input he chose for the honest party P2, along with output of P2.

We now describe the construction of the simulator S, which proceeds as follows:

Input Phase: The simulator internally runs the real-world adversaryA to obtain the private

197



198 Chapter B Formal Proofs of Security of PCI

and public inputs for the corrupt party P1. Let the inputs be as follows.

Private inputs for P1: inp1,1 = [(Y1,ℓ, s
−1
1,ℓ ,m1,ℓ)]ℓ∈[1,N1], where each Y1,ℓ is shared as [Y1,ℓ]G2

using Input-G, and each s−11,ℓ is shared as
[
s−11,ℓ

]
using Input-F.

Public inputs for P1: inp1,2 = [(r1,ℓ, R1,ℓ,m1,ℓ)]ℓ∈[1,N1].

InvokingFPCI(PCI-Any-DC): The simulator S now invokes the ideal functionalityFPCI(PCI-Any-DC)
using the inputs of the corrupt party P1 (the input of the honest party P2 is directly provided
to FPCI(PCI-Any-DC) by the environment Z) to receive (outPCI-Any-DC(inp1, inp2), N2),
where N2 is the number of inputs for the honest party P2, and

outPCI-Any-DC(inp1, inp2) =
({

m(inpi,1)
}
i∈[1,2] ,{(

Y, {minpi(Y )}i∈{1,2}
)
: Y ∈ outPCI-Any(inp1, inp2)

})
where

outPCI-Any(inp1, inp2) =
{
Y ∈ id(inp1,1) ∩ id(inp2,1) :

RPCI-Any,inp1(Y ) = RPCI-Any,inp2(Y ) = 1
}

Simulating Honest Party’s Inputs: The simulator S now simulates a dummy private and

public input on behalf of the honest party P2 for the rest of the protocol as follows:

Simulated private inputs for P2: inp2,1 = [(Y 2,ℓ, s
−1
2,ℓ ,m2,ℓ)]ℓ∈[1,N2], where:

• Each Y 2,ℓ is sampled uniformly at random from G and input to the Input-G sub-

functionality in F [G].

• Each s−12,ℓ is sampled uniformly at random from Zp and input to the Input-F sub-

functionality in F [Fp].

• Each m2,ℓ is provided to S by FPCI(PCI-Any-DC).

Simulated public inputs for P2: inp2,2 = [(r2,ℓ, R2,ℓ,m2,ℓ)]ℓ∈[1,N2], where:

• Each R2,ℓ is sampled uniformly at random from G.



B.1 Proof of Security of ECDSA-based PCI-Any-DC 199

• Each r2,ℓ is set to be the x-coordinate of R2,ℓ.

• Each m2,ℓ is provided to S by FPCI(PCI-Any-DC).

Proceeding with the Protocol: The simulator now proceeds exactly as in the real protocol

described in Algorithm 6. We note here that for each (ℓ, ℓ′) ∈ [N1, N2], prior to the output

stage in Line 25 of Algorithm 6, the entire computation of the protocol is local. Thus, the

environment’s view, up to this point, will not leak whether inputs used by honest players’

are dummy inputs or the ones the environment provided. Note that in the meantime, the

simulator S can query the respective sub-functionalities from F [G] (which includes the

sub-functionalities from F [Fp]).

Handling Openings of C ′′ℓ,ℓ′: We note that for each (ℓ, ℓ′) ∈ [N1, N2], Line 25 of Algo-

rithm 6 involves openings that reveal C ′′ℓ,ℓ′ values that are either 0G (the point of infinity,

which is the additive identity of the group of EC points G) or a uniformly random element

in the group of EC points G. We note that S knows precisely which (ℓ, ℓ′) tuples result in

the opening of a C ′′ℓ,ℓ′ value that is equal to 0G: this corresponds to an intersecting public key

Y which S can figure out deterministically given outPCI-Any-DC(inp1, inp2). S now proceeds

as follows:

• If (ℓ, ℓ′) tuples result in the opening of a C ′′ℓ,ℓ′ value that is equal to 0G: Suppose the

current execution using the dummy inputs for the honest party P2 leads to a value

C ′′ℓ,ℓ′ = Q′ for some EC point Q′ ∈ G. S modifies the simulated share of C ′′ℓ,ℓ′ corre-

sponding to the honest party P2 by dividing (i.e., subtracting the EC point) Q′ from it

locally, and modifies the MAC value by dividing (i.e. subtracting the EC point) Qrα

from the original MAC value. This is possible since S knows the MAC key α.

• If (ℓ, ℓ′) tuples result in the opening of a C ′′ℓ,ℓ′ value that is a uniformly random el-

ement in the group of EC points G: in this case, S samples r ← Zp, randomizes

the simulated share of C ′′ℓ,ℓ′ corresponding to the honest party P2 by multiplying (i.e.

adding the EC point) Qr to it locally, and modifies the MAC value by multiply-

ing (i.e., adding the EC point) Qrα to the original MAC value.

Both of the above steps are possible since S knows the MAC key α.



200 Chapter B Formal Proofs of Security of PCI

Handling Openings of Y1,ℓ values: Finally, Line 26 of Algorithm 6 involves openings that

reveal public keys Y1,ℓ. Note that here, it suffices for the simulator S to proceed exactly as

in the real protocol, since the public keys in the input of the corrupted party P2 are available

to the simulator S in the clear, and were shared by S exactly as in the real protocol.

It is easy to see that the view of Z is identical to that in the F [G]-hybrid model. Hence,

assuming a secure SPDZ-based instantiation of the F [G]-hybrid model using our proposed

MPC framework for generic group operations, our ECDSA-based PCI-Any-DC protocol

securely emulates FPCI(PCI-Any-DC). This concludes the proof of Theorem 4.

B.2 Proof of Security of BLS-based PCI-All

In this section, we prove the SUC security of our PCI-All protocol based on BLS. More

formally, we prove Theorem 5 by constructing a PPT simulator S such that no PPT envi-

ronment Z , who corrupts one of the parties (say P1 without loss of generality) and chooses

the input for P1, can distinguish with significant probability, a view obtained by running

our proposed PCI-Any-DC protocol for ECDSA signatures in Algorithm 7 between a PPT

adversaryA and honest party (say P2 without loss of generality), and a simulated execution

of the protocol between S and FPCI(PCI-All) (for the two-party setting). The environment

Z’s view consists of the intermediate messages sent and received by the adversary A, the

input he chose for the honest party P2, along with output of P2.

We now describe the construction of the simulator S, which proceeds as follows:

Input Phase: The simulator internally runs the real-world adversaryA to obtain the private

and public inputs for the corrupt party P1. Let the inputs be as follows.

Private inputs for P1: aggregated tuples inp1,1 =
[(
Y1,ℓ, σ1,ℓ,M1

)]
ℓ∈[1,N1,1]

and the set

of preempted pairings {z1,ℓ = e(M2, Y1,ℓ)}ℓ∈[1,N1,1], where σi,ℓ =
∏

ℓ2∈[1,Ni,2]
σi,ℓ,ℓ2 and

M i =
∏

ℓ∈[1,Ni,2]
H (mi,ℓ). Each Y1,ℓ is secret-shared as [Y1,ℓ]G2 , each σ1,ℓ is secret-shared

as [σ1,ℓ]G1 , and each z1,ℓ is secret-shared as [z1,ℓ]GT .

Public inputs for P1: inp1,2 = {m1,ℓ2}ℓ2∈[1,N1,2].



B.2 Proof of Security of BLS-based PCI-All 201

InvokingFPCI(PCI-All): The simulator S now invokes the ideal functionalityFPCI(PCI-All)
using the inputs of the corrupt party P1 (the input of the honest party P2 is directly provided
to FPCI(PCI-All) by the environment Z) to receive (outPCI-All(inp1, inp2), N2), where N2 is
the number of inputs for the honest party P2, and

outPCI-All(inp1, inp2) =
{
Y ∈ id(inp1,1) ∩ id(inp2,1) :

RPCI-All,inp1(Y ) = RPCI-All,inp2(Y ) = 1
}

Simulating Honest Party’s Inputs: The simulator S now simulates a dummy private and

public input on behalf of the honest party P2 for the rest of the protocol as follows:

Simulated private inputs for P2: inp2,1 =
[(
Y2,ℓ, σ2,ℓ,M2

)]
ℓ∈[1,N2,1]

and the set of pre-

empted pairings {z2,ℓ = e(M1, Y2,ℓ)}ℓ∈[1,N2,1], where:

• Each Y2,ℓ is sampled uniformly at random from G2 and input to the Input-G sub-

functionality in F [G] instantiated for G2.

• Each σ2,ℓ is sampled uniformly at random from G1 and input to the Input-G sub-

functionality in F [G] instantiated for G1.

• Each preempted pairing z2,ℓ is computed as e(M1, Y2,ℓ), where M1 =
∏

ℓ∈[1,N2,2]
H (m2,ℓ)

is the aggregated hashed-claim corresponding to the corrupt party P1.

• Each m2,ℓ in the simulated public inputs for P2 is provided to S byFPCI(PCI-Any-DC),

from which the simulator S computes M2 =
∏

ℓ∈[1,N2,2]
H (m2,ℓ).

Simulated public inputs for P2: inp2,2 = {m2,ℓ)}ℓ∈[1,N2,2], where:

• Each m2,ℓ is provided to S by FPCI(PCI-All).

Proceeding with the Protocol: The simulator now proceeds exactly as in the real protocol

described in Algorithm 7. We note here that for each (ℓ, ℓ′) ∈ [N1,1, N2,1], prior to the out-

put stage in Line 18 of Algorithm 7, the entire computation of the protocol is local. Thus,

the environment’s view, up to this point, will not leak whether inputs used by honest play-

ers’ are dummy inputs or the ones the environment provided. Note that in the meantime,



202 Chapter B Formal Proofs of Security of PCI

the simulator S can query the respective sub-functionalities from F [Pair] (which includes

the sub-functionalities from F [Fp] and F [G], initialized appropriately for G1, G2 and GT ).

Handling Openings of c′ℓ,ℓ′: We note that for each (ℓ, ℓ′) ∈ [N1, N2], Line 18 of Algo-

rithm 7 involves openings that reveal c′ℓ,ℓ′ values that are either 1G (identity element of

the group GT ) or a uniformly random element in GT . We note that S knows precisely

which (ℓ, ℓ′) tuples result in the opening of a c′ℓ,ℓ′ value that is equal to 1GT : this cor-

responds to an intersecting public key Y which S can figure out deterministically given

outPCI-All(inp1, inp2). S now proceeds as follows:

• If (ℓ, ℓ′) tuples result in the opening of a c′ℓ,ℓ′ value that is equal to 1GT : Suppose the

current execution using the dummy inputs for the honest party P2 leads to a value

c′ℓ,ℓ′ = hT for some element hT ∈ GT . S modifies the simulated share of c′ℓ,ℓ′ cor-

responding to the honest party P2 by dividing hT from it locally, and modifies the

MAC value by dividing hα
T from the original MAC value. This is possible since S

knows the MAC key α.

• If (ℓ, ℓ′) tuples result in the opening of a c′ℓ,ℓ′ value that is a uniformly random ele-

ment in the group GT : S samples r ← Zp, randomizes the simulated share of c′ℓ,ℓ′
corresponding to the honest party P2 by multiplying grT to it locally, and modifies the

MAC value by multiplying (i.e., adding the EC point) grαT to the original MAC value.

Both of the above steps are possible since S knows the MAC key α.

Handling Openings of Y1,ℓ values: Finally, Line 20 of Algorithm 7 involves openings that

reveal public keys Y1,ℓ. Note that here, it suffices for the simulator S to proceed exactly as

in the real protocol, since the public keys in the input of the corrupted party P2 are available

to the simulator S in the clear, and were shared by S exactly as in the real protocol.

It is easy to see that the view of Z is identical to that in the F [G]-hybrid model. hence,

assuming a secure SPDZ-based instantiation of the F [G]-hybrid model using our proposed

MPC framework for generic group operations, our ECDSA-based PCI-All protocol securely

emulates FPCI(PCI-All). This concludes the proof of Theorem 5.



Appendix C

Extensions to Multi-Party PCI

In this section, we discuss extensions of our proposed PCI protocols, namely the PCI-Any-DC

protocol based on ECDSA signatures in Chapter 6.4 and the PCI-All protocol based on BLS

signatures in Chapter 6.5, to the n-party setting.

C.1 Extending ECDSA PCI-Any-DC to n-Party PCI-Any-DC

We first discuss how to extend our ECDSA-based PCI-Any-DC protocol (Algorithm 6,

Chapter 6.4) to the n-party setting. We divide the discussion into three phases - the input

phase, the certificate validation phase, and the certifier matching phase.

Input Phase. To begin with, we can directly replicate the input phase of our two-party

PCI-Any-DC protocol in the n-party setting. Concretely, as in the original two-party proto-

col (Lines 1-6 of Algorithm 6), each of the n participating parties inputs tuples of (identifier,

certificate, claim) (with the same modifications/optimizations as described in Section 6.4)

as its private input, and the corresponding claim and (r, R) for each tuple as its public input.

Certificate Validation Phase. We again directly replicate the certificate validation phase

of our two-party PCI-Any-DC protocol in the n-party setting. Concretely, as in the original

two-party protocol (Lines 7-11 and 12-16 of Algorithm 6), the protocol validates the sig-

203



204 Chapter C Extensions to Multi-Party PCI

natures for each of the n participating parties. The validation proceeds in parallel for each

of the parties.

Certifier Matching Phase. This is where the n-party version of our protocol involves

a non-trivial extension of the original two-party protocol (Lines 19-26 of Algorithm 6).

Note that a trivial extension of the protocol would involve n-nested loops (one for each

participating party), thereby yielding a protocol with computational and communication

complexity O
(∏

i∈[1,n] |inpi|
)

, which is clearly undesirable (this is, in fact, approximately

O(cn) times more expensive that the two-party protocol, assuming a minimum input size

of O(c) per party, i.e., the overheads grow exponentially in the number of parties). It turns

out, however, that this trivial extension essentially matches the certifier public keys across

“all” parties in a pair-wise fashion, which is clearly unnecessary. In fact, without loss of

generality, it suffices to simply match each certifier public key input by party P1 with the

corresponding certifier public keys across parties P2, . . . , Pn. This reduces the required

number of checks from O
(∏

i∈[1,n] |inpi|
)

to O
(
|inp1| ·

∑
i∈[2,n] |inpi|

)
, which is signif-

icantly more efficient (in fact, we now incur approximately O(n) times more checks that

the two-party protocol). In fact, by choosing P1 to be the party with the smallest input size,

we can optimize the overheads even further.

Concretely, in the certifier matching phase of the n-party version of our PCI-Any-DC

protocol, we run a two-nested set of loops – an outer loop for party P1 and (n − 1) inner

loops for parties P2 through Pn. Each inner loop performs essentially the same compu-

tation as in Lines 22-23 of Algorithm 6, except that we now accumulate the outcomes of

each of these intra-loop computations into a global check variable C maintained across all

of these inner loops. This two-layered accumulation step (requiring an intra-loop accumu-

lation followed by an inter-loop accumulation), however, reduces to computing a Boolean

formula in the conjunctive normal form (CNF). This is because we require a multiplication

operation for the intra-loop accumulation (in order to check whether there is at least one

matching certifier identity between P1 and Pj) and an addition operation across the loops to

compute the final intersection. Computing such a CNF formula necessitates using field ele-

ments for accumulation, which is not immediate from Algorithm 6, where the variable C ′′ℓ,ℓ′
is actually a group element and is amenable to field operations. Hence, we need to hash

C ′′ℓ,ℓ′ into a corresponding field element cℓ,ℓ′ , which incurs the additional cost of computing



C.2 Extending BLS PCI-All to n-Party PCI-All 205

O
(
|inp1| ·

∑
i∈[2,n] | inpi|

)
instances of a collision-resistant hash function inside the MPC

protocol1. Along the way, we also incur some other additional costs, such as sampling

additional randomnesses for each inner loop and an n-party opening protocol for the final

accumulation variable.

Assuming O(n) overheads for each such operation, the overall computational and com-

munication complexities scales as O
(
n · |inp1| ·

∑
i∈[2,n] |inpi|

)
, which is approximately

O(n2) times more expensive than the two-party protocol for realistic input sizes. In partic-

ular, we expect that for large values of n (i.e. for multi-party PCI involving a large number

of parties), our proposed solution will be significantly more efficient that the naı̈ve exten-

sion of the two-party solution outlined above (even taking into the hidden constants due

to the additional overheads incurred by our proposed solution). We leave it an as open

question to investigate additional optimizations (or alternative solutions) that could allow

reducing the overheads even further.

Extension to PCI-Any. Finally, analogous to the two-party setting, one can naturally up-

grade the above n-party PCI-Any-DC protocol to an n-party PCI-Any protocol that addi-

tionally guarantees privacy of the input claims for each party by treating the claims as part

of the private input. More concretely, the claims would be secret-shared across all of the

n participating parties instead of being publicly available, and all operations on the input

claims would have to be performed inside the MPC protocol. As discussed in Section 6.4,

this would incur additional costs of performing certain operations (such as field inversions,

extraction of point coordinates, and hashing of claims) inside the MPC protocol. We again

leave it as an interesting future direction to investigate optimization strategies that would

allow performing the above operations efficiently (i.e., outside the MPC protocol) in the

n-party setting.

C.2 Extending BLS PCI-All to n-Party PCI-All

We can similarly extend our BLS-based PCI-All protocol (Algorithm 7, Chapter 6.5) to the

n-party setting. In particular, as in the case of our PCI-Any-DC protocol, we directly repli-

1We can use an MPC-friendly hash here [184] to optimize the associated overheads



206 Chapter C Extensions to Multi-Party PCI

cate the input phase (and its associated pre-processing: Lines 1-6 of Algorithm 7) as well as

the certificate validation phase (Lines 7-10 of Algorithm 7) of our two-party PCI-Any-DC

protocol in the n-party setting, with these phases executed in parallel for each of the n

participating parties.

Finally, for certifier matching, we again exploit the fact it suffices to simply match each

certifier public key input by party P1 with the corresponding certifier public keys across

parties P2, . . . , Pn to design an n-party certifier matching phase with

O
(
|inp1| ·

∑
i∈[2,n] |inpi|

)
computational and communication overhead. Concretely, in the

certifier matching phase of the n-party version of our PCI-All protocol, we run a two-

nested set of loops – an outer loop for party P1 and (n − 1) inner loops for parties P2

through Pn. Each inner loop performs essentially the same computation as in Lines 14-

16 of Algorithm 6, except that we again accumulate all of these computations into a

global variable C maintained across all of these inner loops. Along the way, we sim-

ilarly incur additional costs (such as hashing the accumulation variables into field ele-

ments, sampling additional randomnesses for each inner loop and running an n-party open-

ing protocol for the final global variable), but once again, assuming O(n) overheads for

each such operation, the overall computational and communication complexities scale as

O
(
n · |inp1| ·

∑
i∈[2,n] |inpi|

)
. This is again approximately O(n2) times more expensive

than the two-party protocol for realistic input sizes, and is expected to be significantly

more efficient that a naı̈ve extension of the two-party solution. We again leave it an as open

question to investigate additional optimizations (or alternative solutions) that could allow

reducing the overheads even further.


	Title Page
	Title Page
	Approval Page
	Certificate Page
	Declaration
	Dedication
	Acknowledgments
	Curriculums
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviation and Symbols
	1 Introduction
	1.1 Motivation
	1.2 Objectives of the Thesis
	1.2.1 Enabling Public-Private Blockchain Interoperability
	1.2.2 Identity Exchange across Permissioned Blockchains for Enabling Interoperation
	1.2.3 Cross-chain Negotiation of Common Trust Anchors
	1.2.4 Determining Common Trusted Credential Issuers

	1.3 Contributions of the Thesis
	1.3.1 Public-Private Blockchain Interoperability for Service Decentralization
	1.3.2 Decentralized Cross-Network Identity Interoperation
	1.3.3 Cross-chain Negotiation of Common Trust Anchors
	1.3.4 Private Certifier Intersection

	1.4 Organization of the Thesis

	2 Background and Related Work
	2.1 Blockchain
	2.1.1 Permissionless blockchain
	2.1.2 Permissioned blockchain

	2.2 Smart Contracts
	2.3 Decentralized Identifiers and Credentials
	2.4 Interoperability in Blockchains
	2.4.1 Public-public Blockchain Interoperability
	2.4.2 Private-private Blockchain Interoperability
	2.4.3 Public-private Blockchain Interoperability

	2.5 Cross-Blockchain Identity Management
	2.6 Trust Negotiation

	3 Public-Private Blockchain Interoperability
	3.1 System Model and Design Challenges
	3.1.1 Threat Model
	3.1.2 Design Philosophy and Challenges

	3.2 Decentralized Consortium Interface
	3.2.1 Regular Consensus (Mining) over Public Blockchain
	3.2.2 Consensus on Consensus
	3.2.3 Secure and Verifiable Response Transfer
	3.2.4 Optimizing the Latency for Signature Collection

	3.3 Use Case Implementation: Cloud Federation
	3.4 Evaluation
	3.4.1 Platform Setup
	3.4.2 End-to-end Testbed experiments
	3.4.3 Mininet scalability experiments

	3.5 Summary

	4 Decentralized Cross-Network Identity Interoperation
	4.1 Decentralized Group Identity Management
	4.2 Solution
	4.2.1 Building Blocks
	4.2.2 Architecture
	4.2.3 Identity Exchange Protocol

	4.3 Use Case for Hyperledger Fabric
	4.3.1 Distributed Identity Infrastructure
	4.3.2 Fabric Network Organizations and Identity Providers
	4.3.3 IIN Agents within a Fabric Network
	4.3.4 Protocol: Syncing Foreign Identities through Consensus

	4.4 Analysis
	4.4.1 Generality and Flexibility
	4.4.2 Security
	4.4.3 Privacy
	4.4.4 Ease of Extensibility
	4.4.5 Possible Technical Improvements

	4.5 Discussion on Real-World Deployment
	4.6 Summary

	5 Cross-chain Negotiation of Common Trust Anchors
	5.1 Problem Statement
	5.1.1 Threat Model

	5.2 Approaches
	5.2.1 Active participation of TAs
	5.2.2 Without active participation of TAs

	5.3 MPC protocol for TA Negotiation
	5.3.1 Protocol Overview
	5.3.2 Definition of PTAN in Real-Ideal Paradigm
	5.3.3 Preliminaries
	5.3.4 Formal Description of the Protocol
	5.3.5 Security Analysis

	5.4 Implementation and Evaluation
	5.5 Summary

	6 Private Certifier Intersection
	6.1 Introduction
	6.1.1 Overview of Contributions

	6.2 Private Certifier Intersection (PCI)
	6.2.1 Defining a PCI Protocol
	6.2.2 Security of PCI
	6.2.3 Generic Construction of PCI

	6.3 MPC for Elliptic Curve Pairings
	6.3.1 Tier-1: MPC for Basic Fp Operations
	6.3.2 Tier-2: MPC over any Generic Group
	6.3.3 Tier-3: MPC over EC Pairings

	6.4 PCI-Any-DC using ECDSA signature scheme
	6.5 PCI-All using BLS signature
	6.6 Evaluation
	6.6.1 Implementation Details
	6.6.2 Component wise performance analysis
	6.6.3 End-to-end performance analysis

	6.7 Summary

	7 Conclusion and Future Work
	7.1 Directions of Future Work
	7.1.1 Protocols for Blockchain Network Discovery
	7.1.2 Blockchain Network Identifier
	7.1.3 Efficient Trust Negotiation Protocols


	Bibliography
	A Multi-Party PCI Definition
	B Formal Proofs of Security of PCI
	B.1 Proof of Security of ECDSA-based PCI-Any-DC
	B.2 Proof of Security of BLS-based PCI-All

	C Extensions to Multi-Party PCI
	C.1 Extending ECDSA PCI-Any-DC to n-Party PCI-Any-DC
	C.2 Extending BLS PCI-All to n-Party PCI-All


